Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Optimizing the Performance of MEMS Electrostatic Comb-Drive Actuator with different Flexure Springs

S. Gupta[1], T. Pahwa[1], R. Bansal[1], V. Bansal[1], B. Prasad[1], D. Kumar[1]
[1]Electronic Science Department Kurukshetra University, Kurukshetra, Haryana

A new design of electrostatic comb drive actuator is presented in this paper by using different spring designs and with different folded beam lengths. An increased displacement of lateral comb drive actuator will subsequently be accomplished with the same actuation voltage. Stress distribution over different spring designs are simulated by COMSOL 3.5a using a standard comb drive with 4 movable ...

Design and Simulation of 3D MEMS Piezoelectric Gyroscope using COMSOL Multiphysics®

T.Madhuranath[1], R.Praharsha[1], Dr.K.Srinivasa Rao[1]
[1]Lakireddy Bali Reddy College of Engineering, Mylavaram, Andhra Pradesh, India

MEMS is the leading technology which combines both electronic and mechanical devices on a single microchip. Tracing the position of the object is an important problem in engineering. This can be addressed by Gyroscopes. These sensors are used to find orientation and angular velocity. This paper focuses on 3D MEMS Piezoelectric Gyroscope. COMSOL Multiphysics® is used for designing and ...

Carbon MEMS Accelerometer

J. Strong, and C. Washburn
Sandia National Laboratories
Albuquerque, NM

The newly emerging field of carbon-based MEMS (C-MEMS) attempts to utilize the diverse properties of carbon to push the performance of MEMS devices beyond what is currently achievable. Our design employs a carbon-carbon composite using nano-materials to build a new class of MEMS accelerometer that is hyper-sensitive over a dynamic range from micro-G to hundreds of G’s – far surpassing the ...

Air Damping of Oscillating MEMS Structures: Modeling and Comparison with Experiment

S. Gorelick[1], M. Leivo[1], U. Kantojärvi[1]
[1]VTT Technical Research Centre of Finland, Espoo, Finland

Excessive air damping can be detrimental to the performance of oscillating MEMS components. Complex systems, such as structures in pre-etched cavities or angular comb-drive scanning mirrors, typically require simulations to reliably evaluate the air damping. The simulated and experimental performance of the following systems was evaluated and compared: two types of out-of-plane cantilevers, in ...

Modeling and Analysis of Thermal Bimorph using COMSOL Multiphysics®

Rachita Shettar[1], Dr. B G. Sheparamatti[1]
[1]Basaveshwar Engineering College, Bagalkot, Karanataka, India

In this paper modeling and simulation results of a thermal bimorph is capable of producing increased displacement for increasing temperatures are presented. Thermal bimorphs are popular actuation technology in MEMS (Micro-Electro-Mechanical Systems). Bimorph actuators consist of two materials with different coefficients of thermal expansion. The main objective of this work is to investigate the ...

Parametric Study of Polyimide - Lead Zirconate Titanate Thin Film Cantilevers for Transducer Applications

A. Arevalo[1], I.G. Foulds[1]
[1]King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia

The simulation of the piezoelectric actuation of the micro-cantilever is presented. Lead Zirconate Titanate (PZT) was chosen for the device fabrication design, due to its thin film processing flexibility. Four layers compose the cantilever structures presented in this work: PZT (piezoelectric material), Platinum (electrodes) and Zirconium Oxide as the buffer layer for the PZT film and polyimide ...

A Dynamic Electrowetting Simulation using the Level-Set Method

B. Cahill[1], A. Giannitsis[1], G. Gastrock[1], M. Min[1,2], and D. Beckmann[1]
[1]Institut für Bioprozess- und Analysenmesstechnik e.V., Heiligenstadt, Germany
[2] Department of Electronics, Tallinn University of Technology, Tallinn, Estonia

Electrowetting occurs with the electrical control of the surface wetting properties through the application of an electric potential. A simulation of electrowetting driven droplet dynamics is performed using the COMSOL Multiphysics level-set method for a sessile droplet and for a droplet in a microchannel. The response of the drop to a step voltage is studied. The contact angle at one edge of ...

Time Dependent Simulations of Thermoelectric Thin Films and Nanowires for Direct Determination of their Efficiency with COMSOL Multiphysics®

M. Muñoz Rojo[1], J. Jose Romero[1], D. Ramos[1], D. Borca-Tasciuc[2], T. Borca-Tasciuc[2], M. Martín Gonzalez[1]
[1]Instituto de Microelectrónica de Madrid, Madrid, Spain
[2]Rensselaer Polytechnique Institute, Troy, New York, USA

Thermoelectric materials are one of the most promising materials for future and nowadays energy harvesting devices, as they can convert heat into electricity and vice-versa. The efficiency of thermoelectric materials is related with the figure of merit, ZT. Our work deals with the determination of the parameters that affect the measurement of the ZT with the Harman technique and the best ...

Surface Acoustic Wave Based MEMS Resonator

S. Dixit[1], R. C. Jain[1]
[1]Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India

Surface Acoustic Waves (SAW) is the acoustic wave that propagates along the surface of the substrate with amplitude decaying exponentially away from the surface. A basic SAW device consists of two IDT’s on a piezoelectric substrate such as quartz. Surface Acoustic Wave can be generated by application of a voltage to an IDT deposited on the surface of a piezoelectric substrate. The ...

Design of MEMS Based High Sensitivity and Fast Response Capacitive Humidity Sensor

R. Karthick, S. P. K. Babu, A. R. Abirami, and S. Kalainila
Periyar Maniammai University
Periyar Nagar
Vallam, Thanjavur
Tamilnadu, India

This paper presents the design and simulation of high sensitivity and fast response capacitive humidity sensor. Generally, the capacitive humidity sensor is made up of parallel electrode, the upper electrode being a grid with various line width and line spacing. A model is simulated using COMSOL Multiphysics. High sensitivity and fast response of the model is optimized by varying the ...