Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird

Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.


Sehen Sie sich die Kollektion für die COMSOL Conference 2023 an

MEMS and Nanotechnologyx

CFD-based Evaluation of Drag Force on a Sphere Unsteadily Moving Perpendicularly toward a Solid Surface: a Simple Model of a Biological Spring, Vorticella Convallaria

S. Ryu[1], and P. Matsudaira[2]
[1]Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
[2]Department of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA

Vorticella convallaria, a sessile peritrich ciliate having a contractile stalk, is regarded as a model biological spring because of its remarkably fast contraction. Because the cell body shrinks to sphere-like shape during contractions, it can be assumed to be a sphere moving in ... Mehr lesen

Simulation of Highly Nonlinear Electrokinetics Using a Weak Formulation

G. Soni[1], T. Squires[2], and C. Meinhart[1]

[1]Department of Mechanical Engineering, University of California Santa Barbara, CA, USA
[2] Department of Chemical Engineering, University of California Santa Barbara, CA, USA

We present a numerical model for simulating highly nonlinear electrokinetic phenomena, which occurs at high zeta potentials. In this model, the electric double layer is realized by solving a partial differential equation (PDE) on the double-layer-inducing surface. We also allow for a ... Mehr lesen

Design of an Electrodynamically Actuated Microvalve Using COMSOL Multiphysics® and MATLAB®

M. Williams, J. Zito, J. Agashe, A. Sopeju, and D. Arnold
University of Florida, Gainesville, USA

This paper describes the design of a normally closed, electrodynamic microvalve.  Magnetic forces between a permanent magnet in the valve cover and a soft magnet in the valve seat hold the valve closed.  The combination of electrodynamic actuation and a mechanical restoring spring are ... Mehr lesen

Magnetic Ratchet

A. Auge, F. Wittbracht, A. Weddemann, and A. Hütten
Department of Physics, University of Bielefeld, Germany

Transport phenomena in spatially periodic magnetic systems, in particular the directed transport of magnetic beads in a so called magnetic ratchet (Brownian motor) are considered. Simulations are carried out to test and optimize this system, where the Smoluchowski equation with flux ... Mehr lesen

Designing Piezoelectric Interdigitated Microactuators using COMSOL

O. Myers [1], M. Anjanappa [2], and C. Freidhoff [3]

[1] Mississippi State University, Mississippi State, MS, USA
[2] University of Maryland Baltimore County, Baltimore, MD, USA
[3] Northrop Grumman Corporation, Electronics Systems Sector, Baltimore, MD, USA

This paper presents a methodology towards designing, analyzing and optimizing piezoelectric interdigitated microactuators using COMSOL Multiphysics. The models used in this study were based on a circularly interdigitated design that takes advantage of primarily the d{;sub}33 ... Mehr lesen

Shape, Convection and Convergence

R. Pryor
Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

COMSOL Multiphysics software, when properly configured, can readily solve modeling problems in the laminar flow regime using the standard Navier-Stokes equations or in the fully turbulent flow regime using the kappa-epsilon model. Failure to solve a particular model is typically ... Mehr lesen

Fluidmechanical Damping Analysis of Resonant Micromirrors with Out-of-plane Comb Drive

T. Klose[1], H. Conrad[2], T. Sandner[1], and H. Schenk[1]

[1]Fraunhofer Institute Photonic Microsystems (FhG-IPMS), Germany
[2]TU Dresden, Semiconductor and Microsystems Technology Laboratory, Germany

Damping is the liminting factor for the reachable maximum deflection. Thus, it is a very important issue for resonant microsystems. In this paper, we present a damping model for out-of-plane comb driven resonant micromirrors. The basic concept of this model is to attribute viscous ... Mehr lesen

Micro Cooling of SQUID Sensor

B. Ottosson[1], Y. Jouahri[2], C. Rusu[1], and P. Enoksson[2]
[1]Imego AB, Gothenburg, Sweden
[2]Chalmers University of Technology, Gothenburg, Sweden

The objective of this work has been to realize a feasibility study of a cooling device for a SQUID sensor using liquid nitrogen flowing through micro channels. The design consists of an epoxy cylindrical vacuum vessel skewed by a silicon microchannel heat sink. The SQUID sensor is ... Mehr lesen

A Dynamic Electrowetting Simulation using the Level-Set Method

B. Cahill[1], A. Giannitsis[1], G. Gastrock[1], M. Min[1,2], and D. Beckmann[1]
[1]Institut für Bioprozess- und Analysenmesstechnik e.V., Heiligenstadt, Germany
[2] Department of Electronics, Tallinn University of Technology, Tallinn, Estonia

Electrowetting occurs with the electrical control of the surface wetting properties through the application of an electric potential. A simulation of electrowetting driven droplet dynamics is performed using the COMSOL Multiphysics level-set method for a sessile droplet and for a ... Mehr lesen

Numerical Analysis of the Impact of Geometric Shape Patterns on the Performance of Miniaturized Chromatography Systems

R. Winz[1], E. von Lieres[2], and W. Wiechert[1]
[1]Department of Simulation, University of Siegen, Siegen, Germany
[2]Institute of Biotechnology, Research Centre Jülich, Siegen, Germany

We have implemented a two dimensional chromatography model for the analysis and optimization of structured micro pillar arrays. Dynamic surface interaction of solved molecules is taken into account by the kinetic Langmuir model. Variations of the pillar array geometry lead to deviations ... Mehr lesen