Quick Search

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Analysis of Thermoelectric Phenomena

J. Crompton, S. Yushanov, L. Gritter, and K. Koppenhoefer
AltaSim Technologies, LLC.
Columbus, OH

Thermoelectric phenomena provide the direct conversion of heat into electricity or electricity into heat, the phenomena is described by three related mechanisms: the Seebeck, Peltier and Thomson effects. Thermoelectric devices have found many applications ranging from temperature measurement, solid state heating or cooling and direct energy conversion from waste heat. In this paper, analysis ...

Air Damping of Oscillating MEMS Structures: Modeling and Comparison with Experiment

S. Gorelick[1], M. Leivo[1], U. Kantojärvi[1]
[1]VTT Technical Research Centre of Finland, Espoo, Finland

Excessive air damping can be detrimental to the performance of oscillating MEMS components. Complex systems, such as structures in pre-etched cavities or angular comb-drive scanning mirrors, typically require simulations to reliably evaluate the air damping. The simulated and experimental performance of the following systems was evaluated and compared: two types of out-of-plane cantilevers, in ...

Enhanced Surface Plasmon Polariton Propagation Induced by Active Dielectrics - new

M. Mattheakis[1], C. Athanasopoulos[1], G. P. Tsironis[1]
[1]University of Crete, Heraklion, Greece

We present numerical simulations for the propagation of surface plasmon polaritons in a dielectric-metal-dielectric waveguide using COMSOL Multiphysics® software. We show that the use of an active dielectric with gain that compensates metal absorption losses enhances substantially plasmon propagation. Furthermore, the introduction of the active material induces, for a specific gain value, a ...

Implementation of a Viscoelastic Material Model to Simulate Relaxation in Glass Transition - new

Z. Zheng[1], R. Zhang[1]
[1]Corning Incorporated, Corning, NY, USA

Introduction: Glass relaxation occurs in a range of temperature during transition from equilibrium to super-cooled liquid. Viscoelastic material model can be applied to simulate glass behavior during the glass transition regime and to predict the glass deformation and stress evolution. Viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when ...

Fluid-Structure Interaction Analysis of a Peristaltic Pump

N. Elabbasi, J. Bergstrom, and S. Brown
Veryst Engineering, LLC.
Needham, MA

Peristaltic pumping is an inherently nonlinear multiphysics problem where the deformation of the tube and the pumped fluid are strongly coupled. We used COMSOL Multiphysics to investigate the performance of a 180 degree rotary peristaltic pump with two metallic rollers, and an elastomeric tube pumping a viscous Newtonian fluid. The model captures the peristaltic flow, the flow fluctuations ...

Simulation of the Temperature Profile During Welding with COMSOL Multiphysics® Software Using Rosenthal's Approach - new

A. Lecoanet[1], D. G. Ivey[1], H. Henein[1]
[1]Department of Chemical & Materials Engineering, University of Alberta, Edmonton, AB, Canada

A 3D finite element analysis is carried out, using COMSOL® software, to reproduce the thermal profile obtained with Rosenthal’s equation. The implemented heat transfer equation has been modified as a means to approximate Rosenthal’s solution. An analysis of the differences between the simulation and Rosenthal’s solution, when the geometry of the domain and the source are changed, has been ...

An MHD Study of the Behavior of an Electrolyte Solution Using 3D Numerical Simulation

L. P. Aoki[1], H. E. Schulz[1], M. G. Maunsell[1]
[1]University of São Paulo, São Carlos, SP, Brazil

This article considers a closed water circuit with square cross section filled with an electrolyte fluid. The conductor fluid was moved using an electromagnetic pump, in which a permanent magnet generates a magnetic field and electrodes generate the electric field in the flow. Thus, the movement is a consequence of the magnetohydrodynamic (or MHD) effect. The model adopted here was derived from ...

Small Scale Yielding Model for Fracture Mechanics - new

K. C. Koppenhoefer[1], J. Thomas[1], J. S. Crompton[1]
[1]AltaSim Technologies, LLC., Columbus, OH, USA

Computational tools based on the finite element method have been used extensively to develop solutions for elastic and elastic-plastic fracture mechanics problems. This work uses a small-scale yielding model to compare results developed from COMSOL Multiphysics® with another finite element modeling package and analytical solutions. Analysis are conducted for elastic, and elastic-plastic ...

Modeling of a Counter Flow Plate Fin Heat Exchanger - new

R. Jia[1], J. Hu[1], X. Xiong[2]
[1]Department of Mechanical Engineering, University of Bridgeport, Bridgeport, CT, USA
[2]Department of Electrical and Computer Engineering, University of Bridgeport, Bridgeport, CT, USA

Plate fin heat exchangers are widely used for heat recovery or cooling purposes in many industries, such as cryogenics, aerospace and automobile industries. This paper developed a numerical model to simulate the heat transfer and fluid flow in a counter flow plate fin heat exchanger and optimize its design parameters. The conjugate heat transfer in the finned plate and fluids in the channels ...

Electric Field Calculations for AC and DC Applications of Water Controlled Cable Termination - new

T. Karmokar[1], R. Pietsch[1]
[1]HIGHVOLT Prüftechnik Dresden GmbH, Dresden, Sachsen, Germany

The computation of electric field strength is the state-of-the-art technique for designing and optimizing High-Voltage (HV) equipment. In this research, the equipment under analysis is Cable Termination (CaTr) which is used to apply high-voltage (75 kV – 800 kV AC) on the cable to be tested (Figure 1). The CaTr is based on the principle of linear electric field control using deionised water with ...