Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
We theoretically studied the microwave coplanar line of different geometry based on MgO substrate with a thin (30 nm) ferroelectric layer under the external electric field using the environment of 3D modeling in COMSOL Multiphysics®, RF Module, Frequency Domain. Frequency dependence of ... Mehr lesen
The use of a reaction sphere as an actuator used by satellite Attitude Control System was proposed over twenty years ago. In principle this concept assumes the use of a single reaction sphere which can be accelerated in any direction instead of a set of reaction wheels. The solution ... Mehr lesen
For the SAFARI Imaging Spectrometer, part of the SPICA satellite payload, a Calibration Source is under development. Challenges in the design include the low cooling power (few mW) available at cryogenic temperatures. COMSOL Multiphysics® simulations were used extensively in the design ... Mehr lesen
Surface plasmon resonance (SPR) sensors proved themselves as a promising device for many kinds of applications such as optical biosensing, binding constant determinationor nanofilm thickness measurements. Here we simulate using COMSOL Multiphysics® the light-polaritons coupling for the ... Mehr lesen
A neutrino oscillation experiment aims to the observation of the transformation of a neutrino of a given flavour into a neutrino of a different flavour. A beam of neutrinos is produced through the decay of charged pions which in turn are produced in the collision of high energy ... Mehr lesen
MRI offers many advantages over other modalities and its lack of ionizing radiation is important for children, but can be limited by the radio-frequency (RF) coils available. This work calculates Specific Absorption Rate (SAR) and homogeneity of the RF transmit field (B1+) when imaging ... Mehr lesen
Metallic nanoparticles (NPs) are nowadays used in various areas of biology, chemistry or physics. Focused laser beams, optical tweezers, may be used to manipulate such NPs. However, experimental studies showed that there is a discrepancy between their predicted and observed behavior. ... Mehr lesen
Nano-structures consisting of layered metal-dielectric stacks (MDSs) can be designed to have evanescent transmission and reflection coefficients that oscillate as a function of transverse wavevector and frequency. However, these structures always suffer from the material losses and ... Mehr lesen
The prediction of the exact location and intensity of the electric field induced in the human brain during Transcranial magnetic stimulation is a nontrivial computational task. Numerical simulations of the procedure can be used to acquire first approximations in a safe and controlled ... Mehr lesen
We present a simplified 3D model that simulates the operation of a linear microscale integrated ion trap. It employs a set of metalized electrodes, which are formed on top of an insulator layer on silicon substrate. The confinement in all three dimensions is provided by the application ... Mehr lesen