Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
Sulfur, which is incorporated in the biomass structure, is released into the product gas during gasification as hydrogen sulfide. Hydrogen sulfide is known to deactivate nickel based steam reforming catalysts by chemisorption on the metal surface during steam reforming process. ... Mehr lesen
COMSOL Multiphysics has been applied to develop a model for inductive heating. A coarse, lumped model of the interior of a high temperature reactor is coupled to finite element models for the electromagnetic field, the temperature distribution outside the reactor, and mechanical stresses ... Mehr lesen
Prototype Fast Breeder Reactor (PFBR) is a 500MWe, sodium cooled, pool type, mixed oxide (MOX) fuelled reactor. Sodium flow measurement in various loops of the reactor is of prime importance from the operational and safety aspects. To measure the flow of electrically conducting sodium in ... Mehr lesen
Chemical reaction kinetics identification is an essential and enabling step for reaction engineering designs. This presentation explores the COMSOL platform for performing the kinetics estimation and subsequent reaction engineering of a catalytic reaction with formation of competing ... Mehr lesen
Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory as part of an effort sponsored by the U.S. Department of Energy’s Global Threat ... Mehr lesen
In the present work, numerical simulations of a Monolith Reactor (MR) are carried out in order to develop a pre-design tool for industrial-scale reactors applied to highly exothermal reactions. The reacting circular channels (2-4 mm internal diameter) are coated with a few micron thick ... Mehr lesen
Introduction: Development of next-generation chemical processes that have zero emissions is a key environmental objective for sustainable development. The manufacture of H2SO4 by the air oxidation of SO2 to SO3 is an important technology where an opportunity exists for new catalyst ... Mehr lesen
Steam methane reforming is a widely studied process because of its importance for hydrogen production. A two-dimensional membrane-reactor model was developed to investigate the steam-methane reforming reactions. The use of membrane as membrane-reactor separator offer us few advantages ... Mehr lesen
The crystal growth industry uses high temperature processes. To improve production efficiency, a good knowledge of thermal effects is necessary. We show in this article a methodology to get reliable data by mixing simplified models, sensitivity studies and parameters adjustments. The ... Mehr lesen
H2SO4 is a very important chemical commodity, and indeed, a nation’s H2SO4 production has been a reasonably good indicator of its industrial strength for the last century or so1,2. Nearly 350 MM tons of H2SO4 was produced in 20143.The demand for H2SO4 in United States exceeds the supply ... Mehr lesen