Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
Reflow soldering is a widely used technique in electronics manufacturing that facilitates the precise and automated assembly of electronic components onto printed circuit boards (PCBs). This method is indispensable for the efficient production of intricate electronic devices, ensuring ... Mehr lesen
Macroscopic modeling of fluid flow and thermal diffusion, in a porous medium, requires the description of equivalent properties (permeability, conductivity and diffusivity). However, depending on the microstructure topology of the porous medium and the fluid flow regime at the ... Mehr lesen
We present a numerical model for simulating highly nonlinear electrokinetic phenomena, which occurs at high zeta potentials. In this model, the electric double layer is realized by solving a partial differential equation (PDE) on the double-layer-inducing surface. We also allow for a ... Mehr lesen
Microalgae biomass is an essential part of the global ecosystem. Not only is it responsible for 50% of the global oxygen but also proved to be useful in the development of organic polymers, antioxidants, pharmaceuticals, and feedstocks for aquatic animals. It is considered as an ... Mehr lesen
In this study fluid-dynamical and thermal performance of active chilled beams is investigated by 2D and 3D modelling in COMSOL Multiphysics. Three different typologies of those air conditioning systems are considered. Results, obtained for typical range of variation of operational ... Mehr lesen
Acoustic landmine detection is accomplished using a loud speaker as an airborne source to generate low-frequency waves that enter the soil at a certain incident angle. At a specific frequency, the landmine will "vibrate" at resonance, imparting a certain velocity on the soil particles ... Mehr lesen
Liquid atomization relies on a variety of forces that disturb the surface of the liquid. In the case of flow-blurring (FB) atomization, turbulent structures are induced within the liquid channel to achieve this effect. It is known that the transition from the conventional flow-focusing ... Mehr lesen
Soil sedimentation and consolidation, whether they are naturally or anthropically driven processes, are closely interconnected. While theoretical models are available to separately describe the behaviour of either ‘fluid’ suspensions or ‘solid’ soil, no well-established unified theory ... Mehr lesen
In recent years, with the rise of quantum optical technologies, there has been a spurring research interest growing on single-photon emitters (SPE). To date, the focus in engineering improved SPE has been mainly towards better enhancement overlooking the tenuous manufacturing process ... Mehr lesen
Finite Element Method (FEM) simulations are vital in the design of loudspeakers, providing an efficient alternative to traditional trial-and-error methods. This study aims to advance the understanding and optimization of loudspeaker design focusing particularly on the influence of ... Mehr lesen
