Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
A three-dimensional heterogeneous model of breast has been modeled with a spherical tumor of 1.5 cm. PID controller has been used to perform temperature-controlled RFA of breast tumor. The coupled effect of blood perfusion and variable conductivity during RFA has been investigated. The ... Mehr lesen
Earth heat exchangers are drawing increasing attention and popularity due to their efficiency, sustainability and universality. In addition, DBHE can offer higher temperatures and more return on investment than conventional system. DBHE is also an alternative to geothermal power ... Mehr lesen
The paper outlines a two-dimensional computational methodology and presents results for laminar/laminar condensing flows inside mm- scale ducts. The methodology has been developed using MATLAB/COMSOL platform and is currently capable of simulating film-wise condensation for steady and ... Mehr lesen
Digital Microfluidic Biochip (DMFB) has been widely used in Lab-on-a-Chip (LoC) for disease diagnosis and treatment applications. To quickly convert traditional analog fluidic sample into digital droplets for DMFB processing, a high-throughput microfluidic droplet dispenser device is ... Mehr lesen
This paper presents the solution of a transient electromagnetic problem using COMSOL Multiphysics. The paper also presents a closed-form solution of a transient electromagnetic dipole. The computational solution compares well with a closed-form solution for this problem. This work ... Mehr lesen
This paper deals with numerical modeling of modular industrial induction heating of steel billets for hot forming applications using the COMSOL Multiphysics. A mathematical model based on Finite Element Method is presented. Design of induction heaters is constantly evolving and improving ... Mehr lesen
In this paper, a two dimensional finite element based microstructural model is constructed using Voronoi tessellation for representing polycrystalline material. Elastic wave propagation and Heat diffusion studies are then performed on constructed microstructure model.Computational issues ... Mehr lesen
Ohmic heating is a volumetric heating technology which can effectively process almost any pumpable fluid with extremely high energy efficiency (>95%). This is particularly useful for very thick fluids, those that burn on to hot surfaces and those with high solids content which would ... Mehr lesen
This work examined in detail the a priori prediction of the axial dispersion coefficient from available correlations versus obtaining it and also mass transfer information from experimental breakthrough data and the consequences that may arise when doing so based on using a 1-D axially ... Mehr lesen
INTRODUCTION The global energy infrastructure is comprised of a variety of power magnetic devices (PMDs) which include motors, generators, transformers, inductors, actuators, relays, etc. In the field of power engineering, and particularly in the design of PMDs, modern advances are ... Mehr lesen
