Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
We have developed a model for computing current and field distributions in multifilamentary superconducting thin films subjected to the simultaneous effects of transport ac current and applied dc field perpendicular to the sample. The model is implemented in COMSOL’s PDE module (general ... Mehr lesen
The design of ESS-Bilbao RFQ (RadioFrequency Quadrupole) linear accelerator cavity using COMSOL Multiphysics is presented. The work includes geometry definition, electrostatics, electromagnetic and thermomechanical coupled simulations. The main part of the work corresponds to the ... Mehr lesen
Worldwide efforts to promote the use of renewable energies include combustion-based technologies that produce substantial amounts of pollutants. In order to control the environmental impact a proper treatment of exhaust gases is required. This study describes the development of a ... Mehr lesen
Micro-grippers find applications in micro-robotics, microsurgery, micro-fluidics, micro-relays, assembling and miniature medical instrumentation. Actuation principle involved may be electrothermal, electrostatic, piezoelectric, shape memory and electromagnetic. It has been found that ... Mehr lesen
Assessing the severity of the internal corrosion of structures is of paramount importance in the oil & gas industry. Modelling and simulation of this process proved to be key techniques to understand its mechanism and the main factors influencing its severity [1-4]. Considerable ... Mehr lesen
Interfacial structures/pattern, especially with small-scale dimensions, are important to the chemistry of materials in determining the optical, electrical, mechanical, or other physical properties of novel materials. Polymers are often used for surface patterning. The diversity, the ... Mehr lesen
Strain gauges have been extensively used for detecting strain in various applications. Double-ended tuning fork (DETF) strain gages present better performance characteristics than standard foil gauges, including higher sensitivity, smaller size and higher resolution. This study focuses ... Mehr lesen
Mechanistic mathematical modeling for electrical impedance spectroscopy (EIS) of human skin involves not only the equation of change for the alternating current from and to the electrodes of the EIS probe but also the spatial resolution of the various skin layers and their material ... Mehr lesen
Electrocoalescence is the phenomenon of coalescence of droplets suspended in an insulating liquid or in a gas under the action of an electric field. Electrocoalescence is considered a promising tool in many petrochemical industries for desalting crude oils. However, this technique ... Mehr lesen
This poster presents the design and analysis of a novel horseshoe shaped MEMS actuator for adaptive optics. The actuation mechanism is Lorentz force enabling low current (below 10 mA) operation. The actuator combined with an overlying aluminum coated SU-8 soft polymer membrane for the ... Mehr lesen
