Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL News Magazine 2017

Simulation of Incompressible Flow through Rhombohedric Pores

R. Viola[1][3], F. Zama[2], M.Tuller[3], and E. Mesini[1]

[1]DICMA, University of Bologna, Bologna, Italy
[2]Dep. of Mathematics, University of Bologna, Bologna, Italy
[3]Dep. of Soil, Water, and Environmental Science, University of Arizona, Arizona, USA

Advances in visualization and discretization of pore structures by means of Computed Tomography, and rapidly increasing computational capabilities, allow numerical modeling of pore-scale fluid flow based on the incompressible Navier-Stokes equations rather than using a macroscopic approach based on Darcy’s law. To test the capabilities of the COMSOL Multiphysics modeling platform, we ...

A Model for High Temperature Inductive Heating

S.A. Halvorsen[1]
[1]Teknova AS, Kristiansand, Norway

COMSOL Multiphysics has been applied to develop a model for inductive heating. A coarse, lumped model of the interior of a high temperature reactor is coupled to finite element models for the electromagnetic field, the temperature distribution outside the reactor, and mechanical stresses in the crucible. The model can be applied to study operational conditions, thermal stresses, or design ...

Cascades of Secondary Particles in High Voltage Accelerators

M. Cavenago[1], P. Antonini[1][3], P. Veltri[2], N. Pilan[2], V. Antoni[2], and G. Serianni[2]
[1]INFN-LNL, Legnaro, Padova, Italy
[2]Consorzio RFX, Padova, Italy
[3]Centro Ric. E. Fermi, Roma, Italy

A very simplified system for high voltage test is studied, considering reason for voltage holding failures which are not covered by conventional and local design criteria. A first understanding of the problem is obtained by solving the electrostatic potential in a 2D axis symmetric geometry, considering in detail the electrode shapes, and following a cascade of particle between opposite ...

Simulation of a Heated Tool System for Jet Electrochemical Machining

M. Hackert[1], G. Meichsner[2], and A. Schubert[1][2]

[1]Chair Micromanufacturing Technology, Faculty of Mechanical Engineering, Chemnitz University of Technology, Chemnitz, Germany
[2]Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

Jet Electrochemical Machining (Jet-ECM) is an unconventional procedure using localized anodic dissolution for micromachining. An increasing of the electrolyte temperature will lead to an increase of the electrical conductivity of the electrolyte by about 30% and to a reduction of the dynamic viscosity of the electrolyte by about 25 %. Both will improve the process. Therefore a Jet-ECM tool ...

Streamer Propagation in a Point-to-Plane Geometry

M. Quast[1] and N.R. Lalic[1]
[1]Gunytronic GmbH, St Valentin, Germany

Corona discharge is used in several applications such as surface treatment of polymers, photocopying or dust removal in air conditioning. Streamer formation is undesirable for most of these applications. Therefore, several studies have been dedicated to investigate the formation and propagation of streamers, which are still not fully understood. The most suitable models to describe streamers are ...

Study Of An Axial Injection Torch

K. Gadonna[1], O. Leroy[1], C. Boisse-Laporte[1], P. Leprince[1], and L.L. Alves[2]
[1]LPGP, CNRS/UPS, Orsay, France
[2]IPFN/IST, Lisboa, Portugal

The axial injection torch (AIT) produces high-density plasmas by coupling microwave power to a flowing gas. The plasma is imposed by defining its electron density and temperature whose maximum are given by optical emission spectroscopy diagnostics. Our study of an AIT with COMSOL Multiphysics is for the following modules: - electromagnetic (3D), to calculate the distribution of the ...

Simulation of the Self Assembly of a Microchip on a Structured Surface using the Phase Field Method

N. Boufercha, M. Ghahremanpour, M. Schnaithmann, J. Sägebarth, and H. Sandmaier
Universität Stuttgart / IFF-MST, Nobelstr.12, Stuttgart, Germany

The presented paper describes a method for micro precision assembly of very small objects like future microchips, which have a lateral expansion equal to or smaller than 500 μm. The modelling and simulation of a fluidicbased micro assembly method for a microchip with a dimension of (500 x 500 x 100) μm3 is performed with COMSOL Multiphysics. The finite element method is used for ...

The 3D Mixed-Dimensional Quench Model of a High Aspect Ratio High Temperature Superconducting Coated Conductor Tape

W.K. Chan[1,2], J. Schwartz[2], P. Masson[3], and C. Luongo[4]
[1]FAMU-FSU College of Engineering, Tallahassee, FL, USA
[2]North Carolina State University, Raleigh, NC, USA
[3]Advanced Magnet Lab, Palm Bay, FL, USA
[4]ITER Organization/Magnet Division, Saint Paul-lez-Durance, France

A successful development of an effective quench detection and protection method for a high temperature superconducting (HTS) coil based on a HTS coated conductor tape lays on a thorough understanding of its slowly propagating, three-dimension (3D) quench behavior. Toward this goal, a 3D micrometer scale finite element (FE) thermo-magnetostatic HTS tape model is developed and implemented in ...

Optimization of the Lithium Insertion Cell with Silicon Negative Electrode for Automotive Applications

R. Chandrasekaran, and A. Drews
Research and Advanced Engineering
Ford Motor Company
Dearborn, MI

The US Advanced Battery Consortium (USABC) has established goals for long term commercialization of advanced batteries for electric vehicle applications. In this work, a dual lithium-ion insertion cell with silicon as the negative electrode and an intercalation material as the positive electrode is modeled using COMSOL Multiphysics. Both are composite porous electrodes with binder, void ...

FSI for Coolant Flow in Research-type Nuclear Reactors

F. Curtis[1], K. Ekici[1], and J. Freels[2]
[1]University of Tennessee, Knoxville, TN
[2]Oak Ridge National Lab, Oak Ridge, TN

The High Flux Isotope Reactor, located at the Oak Ridge National Laboratory, is scheduled to undergo a conversion of the fuel used and this proposed change requires an extensive analysis of the flow through the reactor core. The core consists of approximately 500 very thin and long fuel plates through which the coolant (water) flows at a very high rate. Therefore, the design and the flow ...