Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
In this paper, a piezoelectric cantilever is investigated using finite element analysis made possible by COMSOL Multiphysics for the generation of electrical energy. A micro power generator was designed to convert mechanical vibrations present in the environment to electrical power. The ... Mehr lesen
This paper gives an overview of modelling microsensors on geometry and system level. The focus will be on the generation of the multiphysics reduced order system model and the coupling with package and ASIC models. The method is based on modal superposition. This means all the details of ... Mehr lesen
The development of a quantitative nondestructive evaluation method, as an alternative to visual inspection, for inspecting pre-tensioned bolts in fracture critical bridges is presented. In order to understand the ultrasonic behavior of a wide variety of bolt geometries used in bridges, ... Mehr lesen
In this paper a thermal electric finite element method (FEM) analysis was used to investigate the thermal properties of individual electrically driven platinum micro-heaters. The geometric optimization for the micro-heater was performed by simulating a wide range of possible geometries ... Mehr lesen
The inverse diffusion problems deal with the estimation of many crucial parameters such as the diffusion coefficient, source properties, and boundary conditions. Such algorithms are widely applied in many design problems in different physical, chemical, and biological fields. Recently, ... Mehr lesen
This abstract introduces a sensor design for detecting angular acceleration in a single plane using thermal convection. The working principal of the device is based on probing temperature profile changes along a micro-torus caused by angular acceleration. By properly choosing the ... Mehr lesen
Sensitivity of a cantilever-mass based fiber Bragg grating (FBG) accelerometer can efficiently be tailored by altering the distance between the axis of the FBG sensor to the neutral axis of the cantilever. To accomplish that in general, a backing patch is used to mount the FBG on the ... Mehr lesen
Scanning electrochemical microscopy (SECM) is a powerful tool recently developed for studying structures and processes in micrometer and submicrometer sized systems. It can probe electron, ion, and molecule transfers, and other reactions at solid-liquid, and liquid-liquid, interfaces . ... Mehr lesen
Micromachined ultrasound transducers can work as a sensor or actuator for measuring fluid speed and direction, mixing and exciting particles (sonication), taking images (ultrasonography), non-destructive testing and many other purposes in various fields. In this work, a COMSOL ... Mehr lesen
In ESA's Cosmic Vision program, the Japanese SPICA satellite is a mission of opportunity in the M-class, with the SAFARI instrument being one of the next generation space-borne astronomy instruments being developed to take advantage of SPICA’s cryogenically cooled 3-m class primary ... Mehr lesen

 
                                 
                                 
                                 
                                 
                                 
                                 
                                 
                                 
                                