Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
Stimulated Brillouin scattering (SBS) is a nonlinear phenomenon coupling optical and elastic waves. Traditionally regarded as an undesirable side-effect, it has garnered renewed interest as a platform for investigating slow light, nonreciprocity, and for designing high-performance chip ... Mehr lesen
Radiofrequency ablation is one of the common methods used to treat pain, movement or mood disorders. It bases on the electromagnetic energy provided to the selected tissue when an alternating current is applied. The resistive heating produced in this process provokes temperature rise in ... Mehr lesen
We studied the optical phonon excitations (LO) of ordered arrays of dot/ rod core-shell CdSe/ CdS nanorods by Raman spectroscopy. Upon deposition on planar substrates the nanorods formed super-lattice structures via side-by side assembly into tracks over some microns of length. COMSOL ... Mehr lesen
As interest in the electromagnetic spectrum expands towards the infrared and terahertz range, the distinct advantages of using semiconductors instead of metals for plasmonic applications must be understood. Plasmonic resonances in gold (Au) and indium nitride (InN) gratings are studied, ... Mehr lesen
In the past few years, metamaterial perfect absorbers (MPA) have been extensively studied due to their incredible ability to manipulate electromagnetic waves and provide a broadband, polarization-independent, and wide-angle response for a host of applications. The need for high ... Mehr lesen
Introduction: The use of microwave energy for thermal cracking (from thermal stress and water pore pressure) of lignite-coal briquettes increases the lignite friability [1] and is beneficial for later chemical treatment inside a gasifier (for methanol production for example). An ... Mehr lesen
Introduction: Terahertz waves (THz), also known as T-rays, range from 0.3 THz to 10 THz and hence positioned between Microwaves and Infrared radiations on the Electromagnetic spectrum. T-rays exhibit several distinctive properties which make these suitable for applications such as ... Mehr lesen
The extraordinary electromagnetic response of nanostructured material, usually made up of a metallic structures distributed in within a dielectric matrix has attracted a lot of interest in recent years. These materials are technically called metamaterial (MM) since they possess ... Mehr lesen
Fluid flow has the potential to provide significant mechanical energy input for electromagnetic energy harvesters. The effect of a bluff body, such as cylinder played a significant role in the creation of a Karman vortex profile in the fluid flow. We study the effect of the number and ... Mehr lesen
Plasma gasification of biomass is emerging as an efficient way to reduce the carbon foot print of waste management while generating renewable energy. In general, gasification is a process where electromagnetic wave energy is used to heat biomass sufficiently to convert the bio-mass to ... Mehr lesen