Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird

Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.


Sehen Sie sich die Kollektion für die COMSOL Conference 2023 an

Expanding Your Materials Horizons

R.W. Pryor
Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

The concept of virtual prototyping can be found linked to many different keywords in the literature: modeling, look-ahead problem solving, etc. This poster paper briefly discusses the potential real benefits that can be realized through pre-build cost savings, minimization of the number ... Mehr lesen

A Biological Gear in the Human Middle Ear

H. Cai, R.P. Jackson, C. Steele, and S. Puria
Stanford University, Stanford, CA, USA

To support high frequency transmission, the mammalian middle ear construction is unique. The middle ear bones are connected through two mobile joints, the malleus-incus joint (MIJ) and the incudostapedial joint (ISJ). These synovial joints, consisting of joint capsule and synovial fluid ... Mehr lesen

Design of Novel Recirculation System for Slow Reacting Assays in Microfluidic Domain

N.N. Sharma, and A. Tekawade
Mechanical Engineering Group, Birla Institute of Technology & Science, Pilani, Rajasthan, India

A simple design for a microfluidic flow system for use in mixing or reacting assays with limited sample availability has been proposed and analyzed using COMSOL\'s multiphysics simulation package. The design is based on differential electroosmotic flow concept which has facilitated a ... Mehr lesen

COMSOL Implementation for Upscaling of Two-Phase Immiscible Flows in Communicating Layered Reservoirs

X. Zhang, A. Shapiro, and E.H. Stenby
Center for Energy Resources Engineering, Technical University of Denmark, Lyngby, Denmark

Waterflooding is widely used in secondary oil recovery. The physics is described by the model of two-phase flow in porous media. The aim of the present work is to implement this model in COMSOL Multiphysics and to simulate the process of waterflooding. It is analyzed in two dimensions. ... Mehr lesen

FEM Simulation of Generation of Bulk Acoustic Waves and their Effects in SAW Devices

A.K. Namdeo[1], N. Ramakrishnan[2], and H.B. Nemade[1]
[1]Department of Electronics and Communication Engineering, Indian Institute of Technology Guwahati, Guwahati, India
[2]Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, India

This paper presents finite element method (FEM) simulation study of the generation of bulk acoustic waves (BAWs) and their effect on the performance of surface acoustic wave (SAW) devices, using COMSOL Multiphysics. A SAW delay line structure using YZ-cut lithium niobate substrate is ... Mehr lesen

Air Gap Field Analysis of Single Sided Linear Induction Motor With Time-Harmonic Finite Element Method

M.S. Manna[1], S Marwaha[1], and N. Kaur[2]
[1]Dept. of EIE, Sant Longowal Inst. of Engg. & Tech Longowal, Sangrur, Punjab, India
[2]Dept. of ECE, Universal Group on Institutes, Lalaru, Punjab, India

In recent years, the single-sided linear induction motor (SLIM) has been the most suitable choice for electric vehicles of the wheel and touchless type. The reason is simplicity in manufacturing, capability in applying direct force, moving and braking and low pollution. To study the ... Mehr lesen

Powerful automation and optimization methods for Material- and Process analysis with COMSOL Multiphysics and Matlab

T. Frommelt
SGL Group, Technology & Innovation, Meitingen, Germany

Thomas Frommelt received his PhD in physics in 2007 from the University of Augsburg for experimental work and simulation analysis on acoustically driven microfluidic mixing. In 2008, he joined the SGL Group and introduced COMSOL Multiphysics as the tool for flexible equation based ... Mehr lesen

Determination of Electric Potential Distribution and Cell Resistance of a Uranium Electrorefining Cell

S.P. Ruhela, S. Agarwal, B. Muralidharan, B.K. Sharma, B.P. Reddy, G. Ravisankar, K. Nagarajan, C.A. Babu, and P. Kalyanasundaram
Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu, India

Electrorefining is an electrolytic process for obtaining high purity metal. In this process the impure metal is made anode and the high purity metal is deposited on cathode. Electrorefining is a key step in pyrochemical reprocessing of spent fuel from metal fuel fast reactors. ... Mehr lesen

Design Of A Flat Membrane Module For Fouling And Permselectivity Studies

J.M. Gozalvez-Zafrilla, and A. Santafe-Moros
Universidad Politécnica de Valencia, Valencia, Spain

Flat membrane modules are widely used to study the membrane performance at the laboratory which is influenced by pressure and velocity. Most modules designed for laboratory studies have high pressure drop and abrupt changes of flow direction what yield to lack of uniform flow and ... Mehr lesen

Robust and Reliability-based Design Optimization of Electromagnetic Actuators Using Heterogeneous Modeling with COMSOL Multiphysics and Dynamic Network Models

H. Neubert[1], A. Kamusella[1], and T-Q. Pham[2]
[1]Technische Universität Dresden, Germany
[2]OptiY e. K. Aschaffenburg, Germany

For an exemplary electromagnetic actuator used to drive a Braille printer, a design optimization was performed. The optimization involves stochastic variables and comprises nominal optimization, robustness analysis and robust design optimization. A heterogeneous model simulates the ... Mehr lesen