Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird.


Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Präsentationen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl oder verwenden Sie die Schnellsuche, um eine bestimmte Präsentation oder einen bestimmten Filter nach Anwendungsbereichen zu finden.
Sehen Sie sich die COMSOL Conference 2018 Kollektion an

Microwave Drying of Cellular Ceramic Substrates: A Conjugate Modeling Approach to Understand Surface Moisture Migration

A. Halder, and J. George
Corning, Inc.
Painted Post, NY

Microwave drying processes are critical components in the manufacture of cellular ceramic substrates and filters. The objective of this study is to develop a comprehensive model at a small scale and include all the possible physics that are important during microwave drying processes. ... Mehr lesen

Modelling and Simulation of Simultaneous Intrinsic Kinetics, Hydrogen Transport and Heat Transfer in Complex Hydride Hydrogen Storage Systems

G. A. Lozano, J. M. Bellosta von Colbe, T. Klassen, and M. Dornheim
Institute of Materials Research
Materials Technology
Helmholzt-Zentrum Geesthacht
Geesthacht, Germany

In proper designs of hydrogen storage systems based on metal hydrides three processes are modelled and simulated: hydrogen flow (through the metal hydride bed), solid-state chemical transformation, and heat transfer (due to the highly exothermic chemical transformation). In this work, ... Mehr lesen

Electromagnetic Release Process for Flexible Electronics

G. Coryell[1][,][2]
[1]School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
[2]Chemistry Department, United States Naval Academy, Annapolis, MD, USA

Flexible electronics are temporarily affixed to a rigid carrier such as glass or silicon prior to device fabrication to facilitate robotic handling of the device, but also to allow optical lithography to stay within overlay design registration budget; without the rigid carrier, a ... Mehr lesen

Modeling of a Biogas Steam Reforming Reactor for Solid Oxide Fuel Cell Systems

F. Cipitì[1]
[1]CNR-ITAE, Institute of Advanced Technologies for Energy, Messina, Italy

A biogas steam reforming reactor has been developed in order to be integrated into a proof-of-concept SOFC system, able to operate with biogas produced in an industrial waste water treatment unit. A mathematical model, aimed at describing the performance of the reactor, has been ... Mehr lesen

Analysis of Optical Manipulation of a Metallic Nanowire using COMSOL Multiphysics®

Ryota OZAWA et al.[1]

[1]Yokohama National University, Yokohama, Kanagawa, Japan

We have developed optically driven micropumps by manipulating microstructures using optical tweezers. In this study, we proposed and developed a novel manipulation method of a single metallic nanowire. In this method, dynamic optical vortex is used not only for manipulating a metallic ... Mehr lesen

Analysis of Flow in a Microfluidic Device: Pressure Drop, RTD and Mixing

A. Kulkarni[1]
[1]NCL, Pune, Maharashtra, India

Continuous flow reactors are recently being used for lab scale synthesis as well as pilot scale manufacturing of high value low volume chemicals. Here we present our work on a new configuration of flow reactor that includes several 1800 bends and yet a varying radius of curvature thereby ... Mehr lesen

Permeability in Fragmented Materials and its Application to Underground Mining

S. Palma [1], R. Castro [1], A. Hekmat [1],
[1] Mining Engineering Department, Block Caving Laboratory, University of Chile, Santiago, Chile

The block caving mine is considered by the mining industry as one of the natural replacements of the current open cut mines in the near future. The block caving technique is based on the extraction of small broken rocks, created by blasted initially large solid rocks, and the fracture of ... Mehr lesen

Fabrication of Various Carbon Electrode Arrays for Enhancing Electrochemical Signals Using Redox Cycling

Y. Lim, H. Shin [1]
[1] Ulsan National Institute of Science and Technology, Ulsan, Korea

This work demonstrates: Development of carbon IDA nanoelectrode and stacked electrode set enabling the amplification of electrochemical current signals up to ~40 times. Good agreement between simulation and experimental results in the redox cycling effect. These carbon electrode ... Mehr lesen

A Numerical Heat Transfer Analysis on an Implantable Phase-Change Actuated Peristaltic Micropump

F. Forouzandeh [1], D. A. Borkholder [1],
[1] Rochester Institute of Technology, Rochester, NY, USA

Advances in protective and restorative biotherapies have created new opportunities to address vestibular disorders, deafness, and noise induced-, sensorineural-, and age-related hearing loss. Controllable and implantable drug delivery micropumps are essential for therapy development in ... Mehr lesen

Analysis of Degrading Asbestos fibers in MW field by COMSOL multiphysics

K. Kashimura [1],
[1] Chubu Univ.

MW heating acts on asbestos fibers in slates and degrade them at low temperature comparing with conventional heating methods. The simulation of comsol multiphysics makes important roles to investigate the degrading mechanism, and will be introduced at the conference. We introduce the ... Mehr lesen