Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
In principal, the calculation of the magnetic state inside a magnetic object requires the evaluation of the field in the entire unbounded space. With finite element methods restricted to finite domains, commonly auxiliary domains are employed which result in a non-physical cut-off. Not ... Mehr lesen
The bentonite barrier is an essential part of a safe spent fuel repository in granitic bedrock. In this work COMSOL Multiphysics® is used in modelling the Thermal (T), Hydrological (H), Mechanical (M) and Chemical (C) phenomena and processes taking place in a bentonite buffer. Special ... Mehr lesen
This paper proposes a FEM model for a segment of a nervous cell axon, which takes into account, through the so called Hodgkin-Huxley equations, the non linear and time varying dynamics of the membrane surrounding it. A combination with Maxwell equations is performed in a numerical ... Mehr lesen
In this paper we present a summary of our work on numerical modeling of superconductors with COMSOL Multiphysics®. We discuss the two models we utilized for this purpose: a 2-D model based on solving Maxwell equations and a 1-D model for thin conductors based on solving the integral ... Mehr lesen
Tetrafluoroethylene (TFE) is a gas widely employed in industry, which can under specific circumstances experience an exothermic dimerization to octafluorocyclobutane. If the heat generated by this reaction cannot be dissipated to the surroundings, the temperature inside the reactor will ... Mehr lesen
A contactless electromagnetic principle for the excitation of mechanical vibrations in resonant structures has been investigated. The principle relies on no specific magnetic property of the resonator except electrical conductivity and can be adopted for employing the structures as ... Mehr lesen
The discharge properties in low pressure inductively coupled Ar/CH4 plasmas operating at an RF frequency of 13.56 MHz and total gas pressure of 20 mTorr are studied in this work. The calculation of gas flow is performed in coupling with the plasma simulation. The gas flow rate is varied ... Mehr lesen
Transducer optimization is a key aspect for successful development and deployment of advanced sensors, especially when designing 3D structures for harsh environments. For piezoelectric transducers, plate thickness determines the operating frequency of the resonator, which is frequently ... Mehr lesen
The development of powerful negative ion sources requires precise and versatile simulation tools to predict the emittance of the extracted ion beams and the heat load on the electrodes. A first tool is a determination of the plasma beam interface which is accomplished by a set of macro ... Mehr lesen
A COMSOL model of a piezoelectric quartz double ended tuning fork gyroscope was implemented. The gyroscope has two detection modes; the first mode detects the angular velocity about a z-axis perpendicular to the tuning fork plane (x-y plane), while the second mode detects the angular ... Mehr lesen
