Sehen Sie, wie die Multiphysik-Simulation in verschiedenen Branchen eingesetzt wird
Multiphysik-Modellierung und -Simulation treiben Innovationen in Industrie und Wissenschaft voran – wie die zahlreichen Anwendungsbeispiele zeigen, die jedes Jahr in den Fachbeiträgen und Postern von Ingenieuren, Forschern und Wissenschaftlern auf der COMSOL Conference vorgestellt werden. Lassen Sie sich von den unten aufgeführten aktuellen Beiträgen inspirieren oder nutzen Sie die Schnellsuche, um eine bestimmte Präsentation zu finden oder nach Anwendungsbereich oder Konferenzjahr/-ort zu filtern.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
The objective of this work is to develop a MEMS based Variometer to measure the vertical speed and to sense the instantaneous rate of climb or descent in Aircrafts to meet the miniaturization requirements in avionics industry. The design consists of dielectric material in between two ... Mehr lesen
In this work, a MEMS based condenser microphone [1,2] using Polyimide as the diaphragm has been designed. The microphone structure has a backplate placed on top of the diaphragm. The backplate and the diaphragm are made up of polyimide. The two polyimide plates are separated by air gap ... Mehr lesen
In this paper we compare the results from a bending cantilever beam experiment with the theoretical values and COMSOL finite element simulation results. In the experiment a simple cantilever beam with a hole is loaded at the end. Measurements are recorded by four strain gauges mounted on ... Mehr lesen
Conventional swing is one phenomenon which a bowler uses to gain an advantage over the batsman. This study involved simulating conventional swing in the CFD Module of COMSOL Multiphysics® software and comparing the simulated results with experimental results of previous researchers. The ... Mehr lesen
Photonic crystals (PhC) are optical nanostructures that are widely known for their strong spatial and temporal confinement of electromagnetic radiation. Here, we study the resonant optical trapping of a single nanoparticle within a hollow circular photonic crystal cavity. The ... Mehr lesen
Direct realization of absorbed dose to water in diagnostic radiation via calorimetric methods poses many challenges since the thermal signal of interest may be less than a few microKelvin. In actual biological systems or structures, like the lung, there is the additional complication of ... Mehr lesen
Capillary effects are common in microfluidics due to large surface-to-volume ratio of flows inside microchannels. In biological or chemical analysis, capillary flow is used for the transport of liquid and mixing enhancement, without applying any external means. It’s used in biochemical ... Mehr lesen
This paper showed: * The electronic states of core-shell tetrapod with various shell thickness were calculated. Lowest 20 electron and hole wave functions have A1 or T2 symmetry. * At t=1.2 nm, the carriers separation is not serious, core-shell tetrapod is not apparent type II ... Mehr lesen
This paper presents the modeling and simulation of electro-thermo-mechanical self-oscillators, an emerging type of M/NEMS-enabled timing devices in which sustaining electronic amplifiers are not required for their operation. Indeed, they realize amplification in the mechanical domain and ... Mehr lesen
Calibration of field instruments used in radiation treatment clinics is currently traceable to NIST primary standards via protocols involving static, flat-field radiation beams. By contrast, radiation beams prescribed for treating cancer incorporate temporal and spatial modulation ... Mehr lesen
