Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
This paper describes the Virtual Prototype of a Dielectric Window or High Power Microwave Vacuum Tubes and Linear Accelerators. Design formulas are provided and Computer Aided Design techniques based on COMSOL Multiphysics® software are proposed. The virtual prototype considers the ... Mehr lesen
Upon operation, the magnetron of a conventional microwave oven induces a pattern of standing electromagnetic waves in the oven cavity. Interactions with the field define the amount of energy absorbed in a part of a food object within the cavity. The well-known inhomogeneous heating ... Mehr lesen
Accurate and efficient tracking is important for designing particle accelerators as well as many other applications which use electromagnetic fields to control particles. We have developed a tracking code in MATLAB® Simulink® which uses electric and magnetic fields calculated in COMSOL ... Mehr lesen
This paper presents the electromagnetic analysis of an all-superconducting synchronous electric machine, focusing on AC loss calculations in high temperature superconducting (HTS) coils. The numerical analyses of two 3D models are shown, including the model of the machine and its HTS ... Mehr lesen
The Marine Controlled Source ElectroMagnetic (marine CSEM) is a geophysical method used by the oil industry to investigate resistive targets in the sediments under the ocean floor. In this work we simulate marine CSEM data including 1D, 2.5D and 3D modeling. The results obtained with ... Mehr lesen
The growing demand for efficient transmission (1), including refurbishing of existing lines, requires technological advances beyond the actual methodologies, basically electric parameters and electromagnetic fields estimation. Some analytical models developed at CEPEL (2, 3) provide ... Mehr lesen
Plasmonic nanoparticles have received increased interest due to their numerous potential applications in the field of optics and optoelectronics. Currently such metallic nanoparticles are applied in semiconductor devices, such as light emitting diodes (LEDs) and solar cells. The optical ... Mehr lesen
Plasmons, i.e. the collective oscillations of electrons in a metallic nano-structure, lead to strong light scattering, absorption and an enhancement of the local electromagnetic field. In this work, the local electric-field enhancement in a system of dielectric nanoparticles placed ... Mehr lesen
Since the 1980s, the accelerating effect of electromagnetic fields on bone regeneration is used to treat complicated fractures and bone diseases. At the University of Rostock, an electrostimulative hip revision system is developed, basing on the method of Kraus-Lechner. This method ... Mehr lesen
In this paper a multiphysics approach to study the optical properties of integrated waveguides influenced by thermal and mechanical stress is presented. The heating and pressure effects are evaluated by means the Heat Transfer and Structural Mechanics modules respectively. Finally, the ... Mehr lesen
