Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
A simple steady-state photo-fermentative biochemical model was developed using the COMSOL Multiphysics'® Transport of Diluted Species physics interface. A dimensionless model seeks optimal physical parameters based on given biochemical parameters found in literature. A parametric sweep ... Mehr lesen
Integration or retrofitting of photocatalytic air purifying units into HVAC (Heating, Ventilation and Air Conditioning) equipment is an interesting approach for abating indoor air pollution and removal of volatile organic compounds. An attractive possibility is the use of glass fiber ... Mehr lesen
Previous to the present work, a formal calculation was approved [1,2] to support the operation of the High Flux Isotope Reactor (HFIR) Horizontal Beam-Tube 1 of 4 (HB-1). The present calculation [3,4] repeats the previous work using COMSOL Multiphysics® software and extends the analysis ... Mehr lesen
In recent years, the optimization of high-temperature superconductors (HTS) has shown promising potential for developing advanced cable layouts aimed at the realization of practical fusion reactors. Despite their excellent performance in terms of electromagnetic and mechanical stability, ... Mehr lesen
For Hydrogen production purpose from bio-ethanol, IFP set up a pilot reactor that can work at high temperature (1000°C) and high pressure (20 bar). Experiments show that this reactor has a specific thermal behavior that should be modeled in addition to chemical and hydrodynamics to ... Mehr lesen
The computational ability to accurately predict the dynamic behavior of a nuclear reactor core in response to reactivity-induced perturbations is an important subject in reactor physics. Space-time and point kinetics methodologies were developed for the purpose of studying the transient ... Mehr lesen
Thermocouples have been used for measurement of temperature ever since the discovery of Seebeck effect. Though the voltage output of a thermocouple is a function of the temperature difference between hot and cold junctions, the response time and the magnitude of voltage depends on the ... Mehr lesen
In the early 1920’s, Gas-To-Liquids (GTL) and Coal-To-Liquids (CTL) technologies were developed to account for the depleting crude oil resources [1]. During this period, Franz Fischer and Hans Tropsch developed a process to convert synthesis gas (syn gas), derived from coal ... Mehr lesen
For design of radial flow fixed bed reactors, it is important to ensure proper flow distribution through the catalyst bed. A 2D axisymmetric model of a radial-flow reactor was used to evaluate flow maldistribution through the catalyst bed and the pressure drop through the reactor for a ... Mehr lesen
1 Problem Description Most studies for investigating heat and mass transfer phenomena in sorption storage systems use 1D or 2D numerical models. These are inadequate for analyzing processes in more complex geometries used in current prototypes. We present here a 3D model for the ... Mehr lesen