Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
In this study, for the first time, we have carried out three dimensional transient magnetostructural analysis of a Magnetic Pulse welding (MPW) system which welds two tubular work pieces of dissimilar conducting materials. For this purpose a finite element model (FEM) is developed using ... Mehr lesen
Finite element modelling of surgical transducers has been performed and is described. Ultrasonic transducers vibrating at around 25 kHz are used in orthopaedic surgery to cut bone. The high acoustic impedance of the metal blades used in these devices couples energy more efficiently to ... Mehr lesen
A micromirror or a torsional actuator in general has been proven to be one of the most popular actuators fabricated by Micro-Electro-Mechanical System (MEMS) technology in many industrial and biomedical applications such as RF switches, a laser scanning display, an optical switch matrix, ... Mehr lesen
In this paper it is shown how the equivalent circuit parameters of a MEMS resonator can be simply obtained from an eigenfrequency simulation. Additionally, it is demonstrated that the Q-factor as a result of support losses in a MEMS resonator can be determined using a matched boundary ... Mehr lesen
COMSOL Multiphysics software, when properly configured, can readily solve modeling problems in the laminar flow regime using the standard Navier-Stokes equations or in the fully turbulent flow regime using the kappa-epsilon model. Failure to solve a particular model is typically ... Mehr lesen
Manuel Collet is a member of the Department of Applied Mechanics of the FEMTO-ST Institute. He graduated with a degree in Mechanical Engineering from Ecole Centrale de Lyon in 1992 and obtained his PhD in 1996 about Active control of vibrating structures by mean of semi distributed ... Mehr lesen
Introduction In this work, we will present an equation based technique for MOSFET simulation in COMSOL 5.4 and will discuss about the challenges faced in doing the same. The idea behind such a methodology is to demonstrate the coupling of the existing semiconductor equations with ... Mehr lesen
Vibrations are an essential part of our day to day engineering environment, which happen in automobiles, avionics, machines, electric motors, structures, electronic equipments, etc. When a system is vibrating under higher frequencies leads to higher displacement, noise and heat ... Mehr lesen
This paper presents a FEA approach to estimate temperature rise and thermal stress experienced in PZT/Solid structure due to internal heat generation and dynamic excitation. The power dissipative density consumed by structural damping of the mass structure, internal heat generation due ... Mehr lesen
COMSOL Multiphysics® has been used to develop assessment tools for the NASA-sponsored Precision Combustion, Inc. (PCI) regenerable Microlith®- based adsorber modules. The Full Scale Water Removal (FSWR) PCI Microlith® was initially modeled for comparison with exit velocity data, ... Mehr lesen