Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
Field-emitter (FE) electron sources offer significant advantages over photocathode and thermionic sources due to their ability to be operated without the need for an auxiliary laser system or a heating source. While FE cathodes have been traditionally used in DC environments, we explore ... Mehr lesen
Single-phase fluid flow was simulated passing through various three dimensional pipe elbows. The simulations varied by Reynolds number, curvature ratios, and sweep angles and were all conducted using the k-ε model available in COMSOL Multiphysics® software. The intent of this research ... Mehr lesen
Exposure to microgravity is known to alter genomic and proteomic expression and suppress immune cell activity. These changes may influence cancer development. Studying cancer cells in this environment, may help uncover novel therapeutic targets. SUNY Polytechnic Institute and ... Mehr lesen
The purpose of this study was to investigate the impact on number of baffles placed in horizontal- or vertical-alignment of an anaerobic baffled reactor (HABR and ABR, respectively). Computational fluid dynamics was used to evaluate hydraulic performance of each and determine what number ... Mehr lesen
Background: Even though the direct nose-to-brain drug delivery has multiple advantages, its application is limited by the low delivery efficiency (<1%) to the olfactory region with standard nasal devices. Novel delivery techniques are needed that can deliver clinically relevant dosage ... Mehr lesen
Airborne particles or aerosols are an unstable system with distributed properties among its individual particulate members. Its fundamental property such as particle size, composition, electrical conductivity, magnetic susceptibility, and morphology could change in response to ... Mehr lesen
Understanding the air flow patterns and aerosol trajectories in ventilated rooms can provide key information for determining where to place early warning and monitoring instruments, and how to minimize hazardous materials in the worker’s breathing zone. The dispersion within rooms can be ... Mehr lesen
Successive studies on graphene, reactive-edge graphene, and pore functionalized graphene were conducted throughout the use of the extended capabilities of COMSOL Multiphysics® modules, modeling and simulating the activation of functionalized building-blocks made of graphene and C- ... Mehr lesen
When the particles in a colloid come close to each other, multiple scattering in ultrasonic beams is no longer negligible and crowded particle effects emerge. The presence of each particle affects the scattering of all others, leading to coupling effects. We investigate the interaction ... Mehr lesen
The recently developed technique Scanning Tunneling Microscopy in the Field Emission regime (STM FE) is based on the Russell Young's topografiner technology. The set-up is a no contacting device consisting of a sharp tip approached vertically to a conducting surface at variable distances ... Mehr lesen
