Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Design of Microwave Cavity for Non-Thermal Plasma Generation - new

N. Manivannan[1], W. Balachandran[1]
[1]Brunel University, Uxbridge, UK

Design of Microwave Resonance Cavity (MRC) to generate non-thermal plasma to treat NOx and SOx from marine diesel engine is presented in this paper. Microwave frequency of 2.45GHz is used generate the required plasma. A number of wave guides are used to transfer the microwave energy into to MRC from the microwave source. COMSOL multi-physics software is used to model the waveguides and to ...

Calculating the Haze Parameter of Textured Transparent Conductive Oxides

A. ?ampa[1], M. Topi?[1]
[1]University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia

In thin-film solar cells (a-Si:H, µc-Si:H, CIGS, etc.) scattering of light is very important to increase absorption of light in the active layers of solar cells. Today the most efficient thin-film solar cells are designed or deposited on random textured transparent conductive oxides (TCO). In order to study the scattering properties of the surface texture we have developed a numerical model in ...

Metamaterial Based Patch Antenna with Broad Bandwidth Designed by COMSOL Multiphysics® Software

李学识 [1], 郑李娟 [1],
[1] 广东工业大学,广州,中国

A patch antenna based on metamaterials of composite split-ring-resonators (CSRRs) and strip gaps is designed with COMSOL Multiphysics® software. The antenna is constructed by using CSRR structures in forms of circular rings on the patch and employing strip gaps on the ground plane. The signal is fed by a common microstrip line that connects the patch and the input port. The antenna is based on a ...

Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix

O. Kiriyenko, W. Hergert, S. Wackerow, M. Beleites, and H. Graener
Inst. für Physik, Martin-Luther-Universität Halle-Wittenberg, Germany

Glass containing nanoparticles is a promising material for various photonic applications due to the unique optical properties mainly resulting from the strong surface plasmon resonance (SPR) of the silver nanoparticles. The characteristics of the resonance can be modified by varying size, shape and concentration of the particles. A finite element method (FEM) implemented in the software COMSOL ...

Virtual Prototyping of a Microwave Fin Line Power Spatial Combiner Amplifier

A. Leggieri[1], F. Di Paolo[1], D. Passi[1]
[1]University of Rome "Tor Vergata" - Department of Electronic Engineering, Rome, Italy

This paper describes the Virtual Prototyping based on a COMSOL Multiphysics® simulation for a novel Microwave Fin Taper (FT) Spatial Power Combiner (SPC) Amplifier. The analyzed system is waveguide (WG) based, and uses FT Probes to convert the energy of a rectangular WG EM fundamental mode to a Microstrip Transmission Line TEM mode, in order to be amplified by a Solid State Power ...

Self-Consistent Modeling of Thin Conducting Wires and Their Interaction with the Surrounding Electromagnetic Field

G. Eriksson[1]
[1]ABB AB, Corporate Research, Västerås, Sweden

It is demonstrated how the RF Module of COMSOL Multiphysics® can be used to approximately model thin conducting wires or cables and how they interact with a surrounding electromagnetic field. Despite being non-stringent the method can reasonably well predict currents induced by an applied electromagnetic field in wires, and networks of wires, as well as fields radiated from current-carrying ...

Modeling Plasmonic Structure Integrated Single-Photon Detectors to Maximize Polarization Contrast

M. Csete [1], A. Szenes [1], G. Szekeres [1], B. Banhelyi [2], T. Csendes [2], G. Szabo [1],
[1] Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
[2] Institute of Informatics, University of Szeged, Szeged, Hungary

Introduction: Single-photon detectors capable of ensuring high fidelity read-out of quantum information delivered via photons of specific polarization are crucial in QIP [1]. Our previous studies have shown that different types of one dimensional plasmonic structures enhance the absorptance of p-polarized light [2, 3]. The purpose of present study was to optimize four different types of ...

Numerical Optimization Technique for the Optimal Design of the Surface Plasmon Grating Coupler

C. Caiseda[1], V. Aksyuk[2], I. Griva[3]
[1]Inter American University of Puerto Rico, Bayamon, PR, USA
[2]National Institute of Standards and Technology, Gaithersburg, MD, USA
[3]George Mason University, Fairfax, VA, USA

The optimal design of the grating coupler for surface plasmon generation is revisited for its interdisciplinary importance in the efficient use of energy, and the strong dependence of the energy convergence rate of the system on the design. This work contributes a comprehensive gradient based numerical optimization technique to optimize both geometry of the grating and parameters of the ...

Optimization of Mechanical Properties of Superconducting Cavities for Project X LINAC

I. Gonin[1], M. Awida[1], T. Khabiboulline[1], V. Yakovlev[1]
[1]Fermilab, Batavia, IL, USA

Project X is a proposed proton accelerator complex at Fermilab. The CW LINAC is based on five types of resonators operating at three frequencies: half-wave, spoke, and elliptical. The low beam current for the CW operation of Project X requires cavities to operate at a high loaded Q and, thus, narrow bandwidth. Therefore, it requires optimal mechanical design of the cavities to minimize the ...

Multiphysics Applications for Sustainable Engineering and Industrial Processes

S. Savarese [1], L. Kremer [1], C. Sanjeu [1]
[1] Armelio, Les Ulis, France

While addressing the pressing need for better, more sustainable engineering and production improvements, Armélio has identified that easy-to-use, customized, multiphysics applications would fulfill customer requirements. Hence, we now design and deliver COMSOL Multiphysics® apps bringing multiphysics simulation into research labs and production plants. Applications range from heat transfer ...