Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Topographic Effects on Radio Magnetotelluric Simulations on Levees: Numerical Modeling for Future Comparison With Fields Results

R. Duval[1], C. Fauchard[1], R. Antoine[1]
[1]ERA23-IFSTTAR, Laboratoire des Ponts et Chaussées de Rouen, CETE-Normandie Centre, France

We study the topography influence of levees on the electric resistivity signal obtained with the Radio-Magnetotelluric method. Field measurements have been modeled with COMSOL, using the AC/DC and RF Modules. A levee situated in Orléans along the Loire river (France) has been considered in order to design a model tacking account of the skin depth and the incident wavelength, keeping a constant ...

CFD/Electromagnetics Interactions via Realistic Heat and Mass Transfer to Moist Substrates - new

G. Ruocco[1], M. V. De Bonis[2]
[1]Engineering College, University of Basilicata, Potenza, Italy
[2]I​nstitute of Food Science and Production, National Research Council, Bari, I​taly

Localized convection heat and mass transfer can be intensified and optimized by providing exposure to electromagnetic energy. Conjugate heat and mass transfer are configured by solving the momentum, heat and mass transfer simultaneously in both solid (substrate, comprising of a two-phase chemical species) and fluid (auxiliary air) phases. In this way the heat and mass fluxes vary seamlessly ...

Computational Simulation of Gold Core/Shell Nanostructures for Near-Field Transducers in Heat-Assisted Magnetic Recording - new

J. Bennington[1]
[1]Queen's University Belfast, Belfast, Northern Ireland, UK

A recurring problem, in heat assisted magnetic recording is the build-up of thermal energy in the near-field transducer leading to NFT deformation and the cessation of operation. A mechanism to dissipate this excess heat in the NFT without greatly effecting its’ plasmonic response is therefore required. The RF Module and COMSOL Multiphysics® software are used to investigate the plasmonic ...

Determination of the Optical Properties of Individual Gold Nanorods through Numerical Modeling and Experiment

Y. Davletshin[1], J.C. Kumaradas[1]
[1]Ryerson University, Toronto, ON, Canada

The optical scattering and absorption of gold nanorods (GNRs) depends on its size, shape, and surroundings. This dependence is due to both intrinsic and extrinsic effects. A good understanding of this dependence is needed for applications of GNRs in photo-thermal therapy, optical and opto-acoustic imaging, biosensing, and other photonic areas. Extrinsic effects are caused by the production of ...

Optimization of Active Packaging for Microwaveable Food Products Using COMSOL Multiphysics® - new

S. Landa[1], A. Bardenstein[1]
[1]Danish Technological Institute, Taastrup, Denmark

Upon operation, the magnetron of a conventional microwave oven induces a pattern of standing electromagnetic waves in the oven cavity. Interactions with the field define the amount of energy absorbed in a part of a food object within the cavity. The well-known inhomogeneous heating produced in a microwave oven is partially an effect of the standing waves’ natural nodes and antinodes and ...

Effect of Antenna Deformation on Performance

J. Persad [1], S. Rocke [1], A. Abdool [1], D. Ringis [1],
[1] Department of Electrical and Computer Engineering, University of the West Indies, St. Augustine, Trinidad and Tobago

Ubiquitous, unobtrusive wearable computing has tremendous potential for impacting many applications including medical, personal entertainment and surveillance. Advances in the underlying technology have allowed for consistent reduction in the size and weight of emerging solutions, with increasing subsystem integration. A key component for the realisation of these systems is the short and long ...

Multiphysics Design of ESS-Bilbao Linac Accelerating Cavities Using COMSOL

J. L. Munoz, and I. Rodriguez
Bilbao, Spain

A proton linac drives particles using the electric field of a high power RF standing wave in a resonant cavity. The design of these cavities involve several aspects of multiphysics simulation, that have been accomplished using COMSOL. The first step consist on the geometric optimization of the cavities in order to have the correct frequency while maximizing some figures of merit. This task ...

Numerical Study of the Scattering of a Short-Pulse Plane Wave by a Buried Sphere in a Lossy Medium

F. Frezza[1], F. Mangini[1], M. Muzi[2], P. Nocito[3], E. Stoja[1], N. Tedeschi[1]
[1]Department of Information Engineering, Electronics and Telecommunications, "La Sapienza" University of Rome, Rome, Italy
[2]Institute of Advanced Biomedical Imaging, "G. d'Annuzio" University Fondation, University "G. d'Annuzio" Chieti-Pescara, Chieti, Italy
[3]Istituto Superiore C.T.I., Communications Department, Ministry of Economic Development, Rome, Italy

The scattering by a buried sphere in the frequency domain with the use of the Finite Element Method (FEM) implemented by COMSOL Multiphysics, is analyzed. A short-pulse is used as an excitation with the spectrum spanning from 50 MHz to 1 GHz. In order to validate our results, a comparison with data available in the literature is presented, in the simple case of a perfectly-conducting (PEC) ...

Impact of a 3D EM Model Configuration on the Direct Optimization of Microstrip Structures

Z. Brito-Brito[1], J. E. Rayas-Sánchez[1], J. C. Cervantes-González[2], C. A. López[2]
[1]The Jesuit University of Guadalajara. Dept. of Electronics, Systems and Informatics, Jalisco, México
[2]Intel Guadalajara Design Center, Jalisco, México

The EM optimization of a coarsely discretized model of a microstrip band-pass filter implemented in COMSOL Multiphysics® was realized using two different model configurations. We presented a systematic methodology to find an appropriate 3D EM model configuration on a direct EM optimization of a low fidelity models. It was confirmed that the direct EM optimization of coarse models in COMSOL could ...

Thermoelastic Model for Microwave Ablation of Concrete

B. Lepers[1], S. Soldatov[1]
[1]Karlsruhe Institute of Technology, Institute for Pulsed Power and Microwave Technology, Karlsruhe, Germany

The use of high power microwave energy for ablation of contaminated concrete is a promising technique to speed up the dismantling of nuclear power plants. A coupled simulation using COMSOL Multiphysics® finite element software is performed by solving the electromagnetic wave equation at 2.45 GHz for a standard wave guide and a concrete block. The temperature field is obtained with the heat ...