Veröffentlichungen und Präsentationen

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Enhanced Surface Plasmon Polariton Propagation Induced by Active Dielectrics - new

M. Mattheakis[1], C. Athanasopoulos[1], G. P. Tsironis[1]
[1]University of Crete, Heraklion, Greece

We present numerical simulations for the propagation of surface plasmon polaritons in a dielectric-metal-dielectric waveguide using COMSOL Multiphysics® software. We show that the use of an active dielectric with gain that compensates metal absorption losses enhances substantially plasmon propagation. Furthermore, the introduction of the active material induces, for a specific gain value, a ...

Simulations of Negative Curvature Hollow-core Fiber - new

J. Zhang[1], Z. Wang[1], J. Chen[1]
[1]College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, Hunan, China

COMSOL Multiphysics® software was used to simulate and analyze the transmission attenuation spectra of the negative curvature hollow-core fiber (NCHCF) over the wavelength from 2.7 μm to 4.2 μm. The effect of thickness of capillaries and the effect of the distance between the capillaries on confinement loss spectra were studied, which agreed well with the high-loss and low-loss bands predicted ...

Calculation of Capacitances of Symmetrical Triple Coupled CPW Transmission Lines and Multilayer CPW Broadside Coupled Lines Balun

S. Musa[1], M. N. O. Sadiku[1]
[1]Prairie View A&M University, Prairie View, TX, USA

The accurate estimate of values of electromagnetic parameters are essential to determine the final circuit speeds and functionality for designing of high-performance integrated circuits and integrated circuits packaging. In this paper, the quasi-TEM analyses of symmetrical triple coupled Coplanar Waveguide (CPW) transmission lines and multilayer CPW broadside coupled-line balun are successfully ...

Virtual Prototype of a Dielectric Window for High-Power Microwave Tubes - new

A. Leggieri[1], D. Passi[1], F. di Paolo[1]
[1]Dipartimento di Ingegneria Elettronica, Università degli Studi di Roma Tor Vergata, Rome, Italy

This paper describes the Virtual Prototype of a Dielectric Window or High Power Microwave Vacuum Tubes and Linear Accelerators. Design formulas are provided and Computer Aided Design techniques based on COMSOL Multiphysics® software are proposed. The virtual prototype considers the Thermo-mechanical effects due to the joule effect induced by the power which crosses the DW and the Thermal contact ...

Modeling of Multiconductor Microstrip Systems on Microwave Integrated Circuits

S. Musa[1], M. N. O. Sadiku[1]
[1]Prairie View A&M University, Prairie View, TX, USA

The microstrip line is widely used as the planar transmission line in microwave integrated circuits and high speed interconnecting buses. In this paper, we use COMSOL Multiphysics® to study multiconductor microstrip systems on microwave integrated circuits. We specifically illustrate the modeling of open four and five conductors systems. We successfully demonstrated the calculation of the ...

Key-Holes Magnetron Design and Multiphysics Simulation

A. Leggieri[1], F. Di Paolo[1], D. Passi[1]
[1]Univeristy of Rome "Tor Vergata" - Department of Electronic Engineering, Rome, Italy

This paper describes the design and characterization of an 8 slots resonant cavity Magnetron, which undergoes thermal-structural effects due to cathode heating. The proposed study involves Thermal Stress, Eigen-frequency and Particle Tracing analysis based on COMSOL Multiphysics®. Magnetrons are well known and often utilized High Power Radiofrequency Vacuum Tube oscillators. In order to ...

Frequency Response Modeling of Inductive Position Sensor with Finite Element Tools - new

A. K. Palit[1]
[1]LE GmbH, Espelkamp, Germany

Position sensors have several applications in the automotive sector. Some of the common examples include automatic gear shifter module, seat position adjustment and accelerator-pedal position modules etc. Because of extreme weather condition, such as dust, humidity and moisture and fluctuation of temperature and wide operating temperature range. A non-contact type of inductive position sensor has ...

Simulation of Light Coupling Reciprocity for a Photonic Grating

V. Kivijärvi[1], M. Erdmanis[1], I. Tittonen[1]
[1]Aalto University, Department of Micro- and Nanosciences, Espoo, Finland

SOI (Silicon on Insulator) technology utilizes silicon components on SiO2 layer. Propagating electric field distribution in a SOI waveguide is called mode of the waveguide. Photonic gratings are formed by etching grooves on the top of a waveguide. Gratings can operate in two directions. They can guide incident beam into a waveguide or a waveguide mode out of the structure. We study the grating ...

FEM Based Design and Simulation Tool for MRI Birdcage Coils Including Eigenfrequency Analysis

N. Gurler[1], Y. Ziya Ider[1]
[1]Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey

Designing a Radio Frequency (RF) birdcage coil used in Magnetic Resonance Imaging (MRI) at high frequencies where the wavelength is comparable with the coil dimensions is a challenging task. Before construction of the coil, not only calculating the capacitance value which is necessary for the coil to resonate at the desired frequency but also geometrically modeling the coil in a 3D simulation ...

Coupled RF Thermal Analysis of High Power Couplers for Accelerator Cavities

R. Kumar[1], P. Singh[1]
[1]Bhabha Atomic Research Center, Trombay, Mumbai, India

High-power couplers working at 350 MHz for particle accelerator cavities are presently under development in the LEHIPA project at BARC. It is important to analyze RF losses on conducting surfaces and resulting thermal profiles. COMSOL Multiphysics® is used to study these coupled RF-thermal effects and estimate cooling requirements for these couplers. The RF loss on the copper conductors and ...

Quick Search