Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Numerical Study of an LTD Stirling Engine with Porous Regenerator

N. Martaj[1], P. Rochelle[1][2], L. Grosu[1], R. Bennacer[3], and S. Savarese[4]
[1]Universitè de Paris, Paris, France
[2]Institut Jean Le Rond d'Alembert, Université Paris 6
[3]Laboratoire LEEVAM «Environnement, Energétique, Valorisation, Matériaux», Universitéde Cergy-Pontoise
[4]COMSOL France, 5 pl. R Schuman, 38000 Grenoble

The alternative engines of Stirling type, are engines running on "hot air", using both an external heat source and regeneration. They should be considered as an alternative for the effective conversion of renewable energy sources into work, with their theoretical yield equal to the theoretical Carnot limit. The output efficiency and the power of these engines are strongly related to the ...

Nondestructive Testing of Composites Using Model Based Design

E. Nesvijski[1]

There is a practical interest among composite materials manufacturers to high-speed accurate non-destructive evaluation (NDE) technology for voids inspection when these voids are natural components of such complex structures like resin insulated layer of double-sided copper-clad laminates. Model based design (MBD) of NDE system is one of principal solutions for voids inspection in such ...

Nature-Inspired Surfaces and Engineering Applications Using COMSOL Multiphysics®

R. C. Thiagarajan [1], P. Asutosh[1],
[1] ATOA Scientific Technologies Pvt Ltd, Whitefield, Bangalore, Karnataka, India.

Engineering design has long been dominated by orthogonal Cartesian principles. Nature inspired equation based mathematical surfaces are under renewed interest due to their innovative design potential and practical viability by 3D printing. In this paper, the parametric surface modelling feature of COMSOL Multiphysics® is leveraged for developing engineering structures from equation based ...

Simulation Methods on Virtual Laboratories for Characterization of Functionalized Nanostructures

E. Lacatus [1], G. C. Alecu [2], A. Tudor [3], M. Sopronyi [4],
[1] Polytechnic University of Bucharest, Bucharest, Romania
[2] Groupe Renault, Bucharest, Romania
[3] STAR STORAGE,Bucharest, Romania
[4] National Institute for Laser, Plasma and Radiation Physics, Magurele, Romania
[5] Polytechnic University of Bucharest, Bucharest, Romania

Within the emerging integrative concept of IoT (Internet of Things) and IIoT (Industrial Internet of Things) that are paving the way towards Digital Manufacturing Technologies and the next paradigm shift of Industry 4.0, R&D Laboratories have to be at the forefront of the transformation. Using remotely the existing top R&D Laboratories facilities would become soon common practice, but for now ...

Transient Pseudo-3D Model of Multi-Beam Laser Thermal Treatment System

J. Brcka
Technology Development Center
TEL US Holdings, Inc.
Albany, NY

Laser thermal treatment (LTT) systems have applications in IC fabrication for improving low-k dielectrics properties, polymer curing and resist processing. This contribution deals with a transient model of fast scanning and pulsing laser multi-beam system used in semiconductor processing. General Heat Transfer application mode formulation with multi-scale modelling approaches are employed. ...

Extending Engineering Simulations to Scientists: Food Safety and Quality Prediction Using COMSOL Multiphysics® and LiveLink™ for Excel®

A. Warning[1], A. K. Datta[1]
[1]Cornell University, Ithaca, NY, USA

The objective of this study was to develop an easy to use interface in Excel® that connects to not only the solvers in COMSOL Multiphysics®, but also existing databases of food properties, foodborne pathogenic microorganisms kinetics, and chemical kinetics, creating a comprehensive simulation software to predict food safety and quality. The user interface allows the user to select the food, ...

Modeling the Bacterial Clearance in Capillary Network Using Coupled Stochastic-Differential and Navier-Stokes Equations

A. Atalla[1], and A. Jeremic[1]
[1]McMaster University, Hamilton, Ontario, Canada

The capillary network is a complex-interconnected structure. A single blood cell traveling from the arteriole to a venule via a capillary bed passes through, on average, 40−100 capillary segments. The cardiovascular systems responsible of delivering blood to the tissue under sufficient pressure to exchange materials. This is a two way process, at which nutrients, Oxygen, and other ...

Getting State-Space Models from FEM Simulations

A. W. M. van Schijndel [1],
[1] Eindhoven University of Technology, Eindhoven, The Netherlands

Finite element based modeling is one of the most powerful computational tools currently available. Amongst others a possible drawback could be the computation duration time, that can be expected at transient nonlinear problems, or at more simple problems with a large time span. One of the possible solutions is trying simplify the FEM model into a lower order system without losing its ...

The Use of COMSOL in Teaching Heat and Moisture Transport Modeling in Building Constructions

A.W.M. van Schijndel[1] and H.L. Schellen[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

This paper presents the use of the multiphysics package COMSOL for teaching heat and moisture transport modeling in the research area of building physics. It includes a description on how COMSOL works and six exercises with 2D, 3D, steady state and transient models. It is concluded that COMSOL is a very useful tool for this kind of engineering education. Especially, the abstraction level of ...

Electromagnet Shape Optimization using Improved Discrete Particle Swarm Optimization (IDPSO)

R. S. Wadhwa[1], T. Lien[1], and G. Monkman[2]
[1]NTNU Valgrinda, Inst. for produksjons- og kvalitetstek., Trondheim, Norway
[2]FH Regensburg, Regensburg, Germany

The magnetic field gradient produced by an electromagnet gripper head depends on its design. Stochastic Methods offer certain robustness to the design optimization process. In this paper, Improved Discrete Particle Swarm Optimization (IDPSO) searching technique is applied to the shape and magnetic field gradient optimization of an electromagnet head. The magnetic field and forces are ...