Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

A Numerical Euler-Lagrange Method for Bubble Tower CO2 Dissolution Modeling

D. Legendre [1], R. Zevenhoven [1],
[1] Åbo Akademi University, Turku, Finland

While the processes taking place in a bubble reactor are simple to describe in a few sentences it is much more difficult to give a physical description that is useful for engineering purposes. A better understanding of a cluster of bubbles dissolving in a liquid where the species transferred reacts with other dissolved species is an interesting engineering challenge that could result in ...

Inductive Conductivity Measurement of Seawater

R. W. Pryor[1]
[1]Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

The conductivity of seawater directly correlates with the concentration of dissolved salts. This model demonstrates a new approach to the methodology of inductive conductivity measurement of seawater and other liquids. COMSOL Multiphysics® was used to build a parametrically swept model of an O-Core Inductive Conductivity Measurement Sensor for Seawater. This sensor model is built using the ...

Novel Approach for Teaching Microchemical Systems Analysis to Chemical Engineering Students Using Interactive Graphical User Interfaces (GUIs)

A. Nagaraj [1], P. L. Mills [1],
[1] Department of Chemical and Natural Gas Engineering, Texas A&M University - Kingsville, Kingsville, TX, USA

Chemicals are an integrated part of our daily life. While chemicals are significant contributor to a nation’s economy, sound management of chemical production is essential for environmentally friendly operation without maximizing operational costs. Next generation technologies must be developed that potentially change the chemical plants and process engineering giving rise to safe, compact, ...

Extraction of Electrical Equivalent Circuit of One Port SAW Resonator Using FEM-based Simulation

A. K. Namdeo [1], H. B. Nemade [1],
[1] Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India

The paper presents a method of extraction of electrical equivalent circuit of a one port surface acoustic wave (SAW) resonator from the results of simulation based on finite element method (FEM) using COMSOL Multiphysics software. A one port SAW resonator consists of large number of periodic interdigital transducer (IDT) electrodes fabricated on the surface of a piezoelectric substrate. A ...

Model Order Reduction using COMSOL Multiphysics® Software - A Compact Model of a Wireless Power Transfer System

J. Pico [1], T. Bechtold [1], D. Hohlfeld [1],
[1] University of Rostock, Rostock, Germany

This work presents the application of mathematical methods of model order reduction (MOR) for automatic generation of highly accurate, compact models for wireless power transfer systems. We apply a block two-sided second order Arnoldi algorithm to automatically compute a compact model, which is highly accurate, but only demands several orders of magnitude smaller CPU time and can be used for the ...

3D Simulation of Laser Interstitial Thermal Therapy in the Treatment of Brain Tumors

M. Nour [1], A. Lakhssassi [1], E. Kengne [1], M. Bougataya [1],
[1] Université du Québec en Outaouais, Gatineau, QC, Canada

Abstract: Due to the restriction of the number of probes that a patient can tolerate, and the inaccurate information provided by the invasive temperature measurements, which provide information only at discrete points, a mathematical model simulation is more effective to help doctors in planning their thermal treatment doses. This will maximize therapeutic effects while minimizing side effects. ...

Ammonia Removal From Water by a Liquid-Liquid Membrane Contactor Under a Closed Loop Regime

E. Licon[1], S. Casas[1], A. Alcaraz[1], J.L. Cortina[1], C. Valderrama[1]
[1]Universitat Politécnica de Catalunya, Barcelona, Spain

Ammonia separation from water by membrane contactor was simulated on transient state and compared with experimental data. Aqueous low concentrated solution of ammonium with high pH has been pumped inside the hydrophobic hollow fibers, acid solution in the outside part. The system is in closed loop configuration. In order to simulate the separation process, equations were developed considering ...

Evaluation of Instability of a Low-salinity Density-dependent Flow in a Porous Medium - new

Y. T. Habtemichael[1], R. T. Kiflemariam[2], H. R. Fuentes[1]
[1]Department of Civil & Environmental Engineering, Florida International University, Miami, FL, USA
[2]Department of Mechanical & Materials Engineering, Florida International University, Miami, FL, USA

Seawater intrusion into coastal aquifers is usually modeled by using transport models that include account for the effect of variable-density on flow. Variable-density models can be validated with the Henry and Elder benchmark problems. However, when mixed convective flow is simulated under variable density conditions, it is susceptible to physical and numerical instabilities. The purpose of ...

COMSOL Multiphysics® Simulations of Cracking in Point Loaded Masonry with Randomly Distributed Material Properties

A.T. Vermeltfoort[1], A.W.M. van Schijndel[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

This paper describes COMSOL Multiphysics® simulations of the stress and crack development in the area where a masonry wall supports a floor. In these simulations one of the main material properties of calcium silicate, its E-value, was assigned randomly to the finite elements of the modeled specimen. Calcium silicate is a frequently used building material with a relatively brittle fracture ...

Simulation of a New PZT Energy Harvester with a Lower Resonance Frequency Using COMSOL Multiphysics® - new

H. Elbahr[1], T. Ali[1,2], A. Badawi[1], S. Sedky[1]
[1]Zewail City of Science and Technology - Cairo, Cairo, Egypt
[2]Cairo University, Cairo, Egypt

Energy harvesting from environmental vibration nowadays is feasible because of natural oscillations like that caused by air or liquid flow and by exhalation or the heartbeat of a human body. This vibration frequency is typically low (in order of less than 1 kHz). Accordingly, low-frequency vibration based energy harvesting systems are an important research topic; these systems can be used for ...