Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Multiphysics CAE of Shock Absorber

A. Prasad [1], R. C. Thiagarajan [1],
[1] ATOA Scientific Technologies, Bengaluru, Karnataka, India

A Shock absorber is a mechanical device engineered to absorb high impact load and provide comfort while riding on a rough roads. Suspension springs are the key components of a shock absorber to resist critical impact loads and provide ride comfort. The cylindrical spring designs comes with several limitation which can not operate under heavy impact loads. This experiment deals with the ...

Modeling the Sound Radiation by Loudspeaker Cabinets - new

M. Cobianchi[1], M. Rousseau[1]
[1] B&W Group Ltd, Steyning, UK

While musical instruments often rely on a body which resonates on purposefully to amplify the vibration produced by a string or a membrane, such as in a violin or a guitar, loudspeaker cabinets should not contribute at all to the total sound radiation, but aim instead to be a perfectly rigid box which encloses the drive units in charge to transform the electrical signal at their terminal into ...

Analysis of Static Stress in a Bicycle Chain Plate

M. Wagner [1], T. Koch [2], I. Kühne [3], A. Frey [1]
[1] Augsburg University of Applied Sciences, Augsburg, Germany
[2] Comsol Multiphysics GmbH, Göttingen, Germany
[3] Heilbronn University, Kuenzelsau, Germany

Using the Solid Mechanics interface, a model is set up to investigate the impact of static stress on a bicycle chain for different geometries related to three chain generations. A contact model is used to induce the stress. Plastic deformation is taken into account. Based on the simulation results the contribution of plastic deformation to lifetime restriction can be estimated. The results ...

Two-Dimensional FEM Simulation of Ultrasonic Wave Propagation in Isotropic Solid Media using COMSOL

B. Ghose[1], K. Balasubramaniam[2], C.V. Krishnamurthy[3], and A.S. Rao[1]
[1] High Energy Materials Research Laboratory, Pune, Maharashtra, India
[2] Center for Non Destructive Evaluation, Department of Mechanical Engineering, IIT Madras Chennai, Tamil Nadu, India
[3] Department of Physics, IIT Madras,Chennai, Tamil Nadu, India

Ultrasonic Testing (UT) is one of the important Non-Destructive Evaluation (NDE) technique widely used for characterisation of materials as well as detection and characterisation of flaws present in the material used in various industries. There are many different important materials like metals, metallic alloys, rubber, composites etc used in aerospace industries is being inspected using UT as ...

Implementation of a Viscoelastic Material Model to Simulate Relaxation in Glass Transition - new

Z. Zheng[1], R. Zhang[1]
[1]Corning Incorporated, Corning, NY, USA

Introduction: Glass relaxation occurs in a range of temperature during transition from equilibrium to super-cooled liquid. Viscoelastic material model can be applied to simulate glass behavior during the glass transition regime and to predict the glass deformation and stress evolution. Viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when ...

Modeling Cracking in Quasi-Brittle Materials Using Isotropic Damage Mechanics

T. Gasch [1], A. Ansell [1],
[1] KTH Royal Institute of Technology, Stockholm, Sweden

An extension of the Solid Mechanics interface in COMSOL Multiphysics® is presented to analyze localized deformations of quasi-brittle materials, for example cracking in concrete. This is achieved by implementing an isotropic damage mechanics constitutive law, which is combined with both a local and a non-local regularization technique to ensure mesh objectivity. The implementation is made using ...

Numerical Study on Mechanical Properties of Stents with Different Materials during Stent Deployment with Balloon Expansion.

P. Ghosh[1], K. DasGupta[1], D. Nag[2], and A. Chanda[1]
[1]School of Bio Science & Engineering, Jadavpur University, Kolkata, West Bengal, India
[2]Mechanical Engineering Department, Jadavpur University, Kolkata, West Bengal, India

The main reason for stent implantation is to provide mechanical support to the arterial wall. So it is important to consider the different mechanical properties of different stent materials while studying the stent implant’s efficacy. The present study gives a comparative overview of mechanical aspects of different stent materials which are most commonly used in angioplasty. Deformation ...

Bloch Waves in an Infinite, Periodically-perforated Sheet

W. Maysenhölder[1]
[1]Fraunhofer Institute for Building Physics, Stuttgart, Germany

Bloch waves in infinite periodic structures – much in vogue in the present metamaterial age – can be conveniently studied by COMSOL Multiphysics® software. This is demonstrated by a simple, yet rich two-dimensional example: a perforated sheet with square symmetry. Instead of plane waves in homogeneous media, one has to deal with their generalizations: the Bloch waves. The frequencies of such ...

Piezotyres

T. Madhuranath[1], R. Praharsha[1], K. Srinivasa Rao[1]
[1]Lakireddy Bali Reddy College of Engineering, Mylavaram, Andhra Pradesh, India

Access to electricity has become a major problem. In the process of solving this problem we should consider even a small source of electricity. Piezotyres are made to produce electricity from vehicle tyres. For this we have used a piezoelectric property, one of the natural wonder. COMSOL Multiphysics® was used to design and simulate it virtually. We have used different materials in the software ...

Modeling of Residual Stresses in a Butt-welded Joint with Experimental Validation

V. Srivastava [1],
[1] Naval Materials Research Laboratory (NMRL), Defence Research and Development Organization (DRDO), Ambernath, Thane, Maharashtra, India

2D-modeling of arc welding in butt-joint configuration was performed in this study considering thermal-structural interactions. Thermal behavior was modeled in COMSOL Multiphysics® using the Heat Transfer Module with weld heat input as a Gaussian pulse whereas structural behavior using Structural Mechanics Module. Thermal-elastic-plastic behavior model based on Von Mises yield criteria and ...