Veröffentlichungen und Präsentationen

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Modeling the Effect of Porosity on the Elastic Properties of Synthetic Graphite Using CT Scans and the Finite Element Method

G. Sowa[1], R. Paul[1], R. Smith[1]
[1]GrafTech International Inc., Parma, OH, USA

Predicting the physical properties and performance of carbon and graphite materials based on the microstructure of the finished material is a challenging endeavor. This paper discusses the process and workflow for measuring and analyzing the pore structure of graphite by combining advanced CT image technology with Simpleware’s ScanIP™ software. A stack of scanned CT images are imported into ...

Fatigue Damage Evaluation on Mechanical Components under Multiaxial Loadings

R. Tovo[1] and S. Capetta[1]
[1]Dipartimento di Ingegneria, Università degli Studi di Ferrara, Ferrara, Italy

This paper is concerned with the fatigue behavior of complex, three-dimensional, stress concentrations under multiaxial loadings. Starting from the stress field obtained from a linear elastic analysis and taking advantage of the so-called implicit gradient approximation, an effective stress index connected with the material strength is calculated. Besides, this work summarizes a first ...

Simulation of a Modular Die Stamp for Micro Impact Extrusion

A. Schubert[1][2], R. Pohl[1], and M. Hackert[1]
[1]Chair Micromanufacturing Technology, Faculty of Mechanical Engineering, Chemnitz University of Technology, Chemnitz, Germany
[2]Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

Micro impact extrusion is investigated at Chemnitz University of Technology as a potential procedure for large area machining of micro cavities within the scope of the SFB/Transregio 39 PT-PIESA of the German Research Foundation. Applying impact extrusion micro forming is done by material flow opposite to the effective direction of the force into the structure of the tool. Therefore no structured ...

Durability Analysis on Solar Energy Converters Containing Polymeric Materials

J. Wirth, S. Jack, M. Köhl, and K.-A. Weiß
Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany

The key issues of the Fraunhofer Institute for Solar Energy Systems are research and development of solar technologies for the fast growing market of solar energy. This paper presents examples of the usage of COMSOL Multiphysics: The ingress of water is a serious reason for the degradation of photovoltaic modules which can hardly be measured using experimental approaches yet. Therefore, a ...

Modeling of Anisotropic Suede-like Material During the Thermoforming Process

G.Lelli[1], M. Pinsagli[1] , and E. di Maio[2]
[1]Alcantara S.p.A. (Application Development Center), Nera Montoro, Italy
[2]University of Naples "Federico II" (Department of Materials and Production Engineering), Naples, Italy

Physical and mechanical studies of Alcantara® have shown very pronounced anisotropic nonlinear features. Using constitutive equations borrowed from the modelling of biological tissues like tendons and/or arteries under the form of hyperelastic free-energy functions, a good representation of such mechanical features can be obtained. In particular, a combination between the optimization module ...

Ribbon Formation in Twist-Nematic Elastomers

L. Teresi[1], V. Varano[1]
[1]LaMS - Modelling & Simulation Lab, Università degli Studi Roma Tre, Roma, Italy

Nematic Elastomers (NEs) possess both the elastic properties of rubbers and the orientational properties of liquid crystals. Those two properties makes the configuration of NEs very sensitive to isotropic-nematic phase transition. Our goal is to replicate with numerical experiments the phenomena of shape formation in Twist-Nematic Elastomers (TNEs): a flat bar evolves into a helicoidal shape ...

Design and Simulation of MEMS based Micro Pressure Sensor

P. Acharya[1]
[1]B.V.Bhoomaraddi College of Engineerring & Technology, Hubli, Karnataka, India

The world is getting digitalized, demands for new and emerging technologies have reached its peak, and customer demands have taken a U-turn. To cope with such unique requirements many systems and system devices are into the market and one of such enhancing technology is MEMS. MEMS are systems of small size, light weight, enhanced performance and reliability finding widest of applications in ...

Simulation of Cellular Traction Force Based Deflection of PDMS Micropillars - new

J. Wala[1], D. Maji[1], S. Dhara[1], S. Das[1]
[1]Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India

Cells are complex entities which not only passively sense external stimuli (viz. chemical, optical or mechanical) but also interact with extracellular matrix (ECM) by regulating cellular behavior such as growth, proliferation, migration, etc. Monitoring cell growth and migration of adherent cells becomes a crucial factor in determining cell-cell and cell-substrate interaction, important for ...

Multiscale Damage Detection in Conductive Composites

R. C. Thiagarajan
ATOA Scientific Technologies Private Limited, Bangalore, India

Conductive Composites such as carbon fiber reinforced composites are increasingly used in safety critical aerospace applications. The catastrophic macro structural failure of composite structures initiates from a micro level failure event such as fiber breaks. The ability to detect damage early on can improve the safety level and reliability of composite structures. A multilevel self-sensing ...

Numerical Modeling and Performance Optimization Study of a Diaphragm Pump for Medical Application

I. Lupelli[1], P. Gaudio[1], A. Malizia[1], R. Quaranta[1]
[1]Department of Industrial Engineering, University of Rome “Tor Vergata”, Roma, Italy

In this contribution we present the results of the numerical modeling and performance optimization study of a diaphragm pump for drug infusion. The main objective is to develop a numerical model that replicates the pumping cycle (400ms) and also provides indications about the variation of pumping performance as consequence of the variation of the chamber-diaphragm system geometry, diaphragm ...

Quick Search