Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Finite Element Analysis of Temperature and Viscosity Effects on Resonances in Thin-Film Bulk Acoustic Wave Resonators - new

G. Rughoobur[1], M. DeMiguel-Ramos[2], L. García-Gancedo[1], M. Clement[2], J. Olivares[2], T. Mirea[2], W. I. Milne[1], E. Iborra[2], A. J. Flewitt[1]
[1]University of Cambridge, Cambridge, UK
[2]Universidad Politécnica de Madrid, Madrid, Spain

The shear mode of film bulk acoustic resonators (FBARs) is preferred to the longitudinal mode owing to its lower acoustic losses in a liquid. However in addition to mass loading, the resonance is also affected by temperature and liquid viscosity. These two parameters can either be sensed or compensated using a layer of silicon dioxide, which has a unique temperature coefficient of elasticity. In ...

Bone Remodeling Following Total Hip Replacement: Short Stem Versus Long Stem Implants

M.S. Yeoman[1], A. Cizinauskas[1], C. Lowry[2], G. Vincent[3], S. Collins[3], D. Simpson[3]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom
[2]Corin Group, Cirencester, United Kingdom
[3]Imoprhics, Manchester, United Kingdom

Bone resorption around hip stems, in particular periprosthetic bone loss, is a common observation post-operatively. A number of factors influence the amount of bone loss over time and the mechanical environment following total hip replacement (THR) is important. Conventional long stem prostheses have been shown to transfer loads distally, resulting in bone loss of the proximal femur. More ...

Impact Simulation of Extreme Wind Generated Missiles on Radioactive Waste Storage Facilities

G. Barbella[1]
[1]Sogin SpA, Roma, Italy

The structural design of temporary storage facilities for radioactive waste generally requires the fulfillment of highly severe performance criteria if compared to conventional buildings. This work focuses on the study of the behavior of a steel door subject to the impact of extreme wind generated missiles, which is one of the most demanding external events to account for. A quasi-rigid small ...

Simulation of a Micro-Scale Out-of-plane Compliant Mechanism - new

E. Rawashdeh[1], A. Arevalo[1], D. Castro[1], I. G. Foulds[2], N. Dechev[3]
[1]Computer, Electrical & Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University of Science & Technology, Thuwal, Saudi Arabia
[2]School of Engineering, Okanagan Campus, The University of BC, Vancouver, BC, Canada
[3]University of Victoria, Victoria, BC, Canada

In this work we present the simulation of a micro-scale large displacement compliant mechanism called the Tsang suspension. It consists of a flat micro-plate anchored down by two springs on either side, that can rotate out-of-plane and maintain its vertical assembly by a simple single-axis actuation. COMSOL Mutliphysics® software was used to simulate these devices and extract the reaction forces ...

Multiscale Damage Detection in Conductive Composites

R. C. Thiagarajan
ATOA Scientific Technologies Private Limited, Bangalore, India

Conductive Composites such as carbon fiber reinforced composites are increasingly used in safety critical aerospace applications. The catastrophic macro structural failure of composite structures initiates from a micro level failure event such as fiber breaks. The ability to detect damage early on can improve the safety level and reliability of composite structures. A multilevel self-sensing ...

Thermo Mechanical Behavior of Heat Exchangers

A. Chidley, F. Roger, and A. Traidia
ENSTA Paristech, Palaiseau, France

Nowadays, to go along with sustainable development and for cost matters, automotive heat exchangers are built with less and less aluminum and the process costs are being cut. However, the real mechanical response is a plastic shakedown, which is why we need to model the cyclic response as well as to find a fatigue criterion. A finite element model was developed using COMSOL Multiphysics to ...

Stress and Fatigue Analysis of Subsea Umbilical and Cable Systems

M.S. Yeoman[1], V. Sivasailam[1], T. Poole[3], S. Ingham[3]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom
[3]JDR Cable Systems, Littleport, Cambridgeshire, United Kingdom

With the ever changing energy requirements & demand for better communication links across the planet, subsea umbilical & cable requirements are becoming more stringent. Where longer service life at a lower cost is now expected from manufacturers. In addition to this, with the need to exploit more sustainable energy sources from offshore wind & wave, where extreme weather conditions are ...

Elasto-Plastic FEM Models Explain the Emplacement of Shallow Magma Intrusions in Volcanic Complexes

A. Bistacchi[1]
[1]Università degli Studi di Milano Bicocca, Milano, Italy

We present numerical models and field data that aid understanding of volcano-tectonic processes related to the propagation of inclined sheets and dykes under a stress field resulting from the inflation of a shallow magma chamber. Structural field data from the classical Cuillins cone-sheet complex (Isle of Skye) show that sheets have a constant average dip angle (45°), with pure dilational or ...

Design of Pressure Measuring Cells Using the Unified Material Law

P. Aguirre[1], F. Figueroa[1]
[1]Sensor Technik Wiedemann GmbH, Kaufbeuren, Bayern, Germany

Pressure Sensors are widely used in the automotive industry. Their main use is the dynamic monitoring of pressure inside combustion engines. To achieve a good signal accuracy, the design of pressure sensors can be improved with FEM calculations of stress and strains on the measuring cell depending on their geometry and material properties. The geometry is adapted according to a special ...

Generalized Plane Piezoelectric Problem: Application to Heterostructure Nanowires - new

H. T. Mengistu[1], A. García-Cristóbal[1]
[1]Material Science Institute, University of Valencia, Valencia, Spain

The possibility to dispose of two-dimensional (2D) approaches to problems originally posed in a three-dimensional (3D) geometry is always desirable since it reduces significantly the computing resources needed for numerical studies. In this work we report on a new 2D approach called Generalized Plane Piezoelectric (GPP) problem [1] and apply it to the calculation of the strain and electric ...