Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

M4B, a Tool for the Analysis of THQM Behavior of Soils and Its Interaction with Building Foundations

J. Alonso [1], V. Navarro [1], M. Moya [1],
[1] Universidad de Castilla la Mancha, Ciudad Real, Spain

The Geoenvironmental Engineering Group of the University of Castilla-La Mancha is developing a computational tool, M4B, for describing the influence of environmental loads on the deformation behavior of soils and its interaction with building foundations. This tool comprises a set of algorithmic files in text format which can be implemented in COMSOL Multiphysics®. To illustrate the M4B scope, ...

Simulation of Hydrogen Transport and Hydrogen-Induced Damage of High-Strength Steel Concepts

T. Schaffner [1], A. Hartmaier [2]
[1] ThyssenKrupp, Duisburg, Germany
[2] Ruhr-Universität Bochum, Bochum, Germany

The prediction of material damage induced by hydrogen transport mechanisms is a major challenge for the development of new steel concepts. Especially the ultra-high strength steel concepts (UHSS), like dual phase and martensitic steels, can exhibit a higher vulnerability to hydrogen induced damage. The main reason for this is the complex microstructure, including a large number of several ...

用于中高端扬声器设计的完整仿真分析方法

陆晓 [1], 温周斌 [1], 徐楚林 [1], 岳磊 [1],
[1] 浙江中科电声研发中心,嘉善,中国

扬声器仿真分析方法越来越受到电声企业关注,已成为扬声器设计的重要手段和发展方向。要想设计中高端扬声器,就必须建立一套完整的仿真分析方法。 本文介绍一种基于 COMSOL Multiphysics® 的用于中高端扬声器设计的仿真分析方法。该方法不仅包含了扬声器磁路、振动系统(结构)和声场的耦合分析,还模拟了温度对磁性材料和振动部件材料特性的影响。由于扬声器振动部件材料的粘弹性等特性,因此必须建立更为准确的材料模型。利用 COMSOL Multiphisics 软件丰富的第三方软件接口和二次开发功能,经数据后处理可得到声障板等条件下的声压级、谐波失真和互调失真等。 采用本方法可有效指导中高端扬声器的仿真设计,准确预估扬声器的声压级、谐波失真和温度场等关键指标,对扬声器产品的理解和设计水平亦将达到新的高度。

Design and Analysis of Implantable Nanotube Based Sensor for Continuous Blood Pressure Monitoring

M. Silambarasan, T. Prem Kumar, M. Alagappan, and G. Anju
PSG College of Technology
Coimbatore
Tamil Nadu, India

The present work aims to develop a blood pressure sensor using MEMS/NEMS technology. A normal blood pressure detector is used externally, but this work mainly aims for designing an implantable nanotube based sensor for continuous monitoring of blood pressure. The use of COMSOL Multiphysics 4.1 acts as a good platform to develop a nano tube based sensor design by using the MEMS module. The ...

Toroidal Spring Coil: Displacements & Stress Analysis to Detect the Sealing Parameters

V. Riccardi [1],
[1] Cesare Bonetti, Garbagnate Milanese, Italy

The aim of the simulation is to study the behavior of a particular arrangement of a sealing system made of a Toroidal Spring Coil encapsulated in an thin casing, which is provided with a circumpherential cut to permit the pressure fill it inside. The mechanical simulation implemented in COMSOL Multiphysics® software is necessary to understand the displacements and stresses of the structure ...

Simulation of Thermal Elastohydrodynamic Lubricated (TEHL) Gear Contacts - new

T. Lohner [1], A. Ziegltrum [1], K. Stahl [1],
[1] Gear Research Centre (FZG), Technical University of Munich (TUM), Garching, Germany

Thermal elastohydrodynamic lubricated (TEHL) contacts occur very frequently in drive technology and thus in gear drives. In this presentation, the implementation of a finite element based TEHL simulation approach for gear contacts in COMSOL Multiphysics® software is shown. The physically based simulation approach used is different to most of the existing TEHL simulations and is required to ...

Thermoelastic Model for Microwave Ablation of Concrete

B. Lepers[1], S. Soldatov[1]
[1]Karlsruhe Institute of Technology, Institute for Pulsed Power and Microwave Technology, Karlsruhe, Germany

The use of high power microwave energy for ablation of contaminated concrete is a promising technique to speed up the dismantling of nuclear power plants. A coupled simulation using COMSOL Multiphysics® finite element software is performed by solving the electromagnetic wave equation at 2.45 GHz for a standard wave guide and a concrete block. The temperature field is obtained with the heat ...

Thermomechanical Modeling of Dislocation Density Increase During PVT of SiC Crystals

D. Jauffrès [1], J. M. Dedulle [2], D. Chaussende [2], K. Ariyawong [2]
[1] Univ. Grenoble Alpes, LMGP, SIMAP, CNRS, Grenoble, France
[2] Univ. Grenoble Alpes, LMGP, CNRS, Grenoble, France

During Physical Vapor Transport (PVT) growth of single 4H-SiC crystal and subsequent cooling down, thermal stresses lead to the multiplication of dislocations that are non-desirable for the semiconductor applications of this material. These dislocations induced by thermal stresses could be reduced by an appropriate control of the thermal gradients inside du crystal during its growth and cooling ...

Simulation of the Thermal Expansion of an Inductively Heated Gear Wheel for Shrink Fitting Purposes

C. Hollenbeck [1], Z. Jildeh [1], T. Rydlewski [1], P. Kirchner [1],
[1] Imagine Engineering GmbH, Bergheim, Germany

Due to the advantages of induction heating as a method for precise and efficient local heating, it is perfectly suited for thermal shrink fitting of a gear wheel on a shaft. In this work, a simulation model was established to study the induction heating of a gear wheel, its thermal expansion as well as the shrink fitting process. It was possible to find an appropriate geometry for the induction ...

Determination of the Sweet Spot of a Cricket Bat using COMSOL Multiphysics® Software

Y. Mulchand [1], A. Pooransingh [1], R. Latchman [1],
[1] The University of the West Indies, St. Augustine, Trinidad and Tobago

The aim of this paper is to determine the location of the “sweet spot” for a selected cricket bat commonly used in the sport. Knowledge of the “sweet spot” is important in delivering a shot that utilizes the optimal zone of the bat that corresponds to the maximum power of the stroke. A model of the cricket bat was constructed in the Structural Mechanics Module of COMSOL Multiphysics® Software ...