Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Error Analysis in Estimating Temperature-Dependent Thermal Diffusivity and Kinetic Parameters using Heat Penetration Data

K.D. Dolan[1,2], A.R. Sommerlot[1], and D.K. Mishra[1]
[1]Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan, USA
[2]Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA

Growing consumer demand for nutraceuticals has stimulated interest by food companies to increase levels of these health-promoting compounds. Thermal processing of canned foods in a retort produces a unique problem: some of the nutraceuticals are highly sensitive to temperature, and require accurate parameter estimates to predict their fate during processing. Error in temperature measurement due ...

Desorption Simulation of a Highly Dynamic Metal Hydride Storage System

D. Wenger[1], W. Polifke[2], and E. Schmidt-Ihn[3]
[1]Wenger Engineering GmbH, Ulm, Germany
[2]Technical University of Munich, Munich, Germany
[3]Daimler AG, Kirchheim/Teck, Germany

Metal hydrides are a widely-used method for storing and releasing hydrogen chemically under moderate conditions. This paper will present how highly dynamic metal hydride storage has been simulated and optimized using COMSOL Multiphysics. It will be shown how mass, energy and momentum balances were implemented and what boundary conditions were set to resolve various scenarios. The result of the ...

Solid State Transport of Reactive Charged Particles: Application to Metal Oxidation

P. Buttin[1], B. Malki[1], P. Barberis[2], and B. Baroux[1]
[1]SIMAP/groupe SIR, CNRS, France
[2]AREVA - AREVA NP - CEZUS Research Center, France

This paper studies multicomponent transport through zirconia, assuming a chemical reaction involving electrons and oxygen vacancies defects. Classically, according to the Wagner theory for ambipolar diffusion, the electroneutrality condition in the oxide is considered. Therefore three constraints must be satisfied on the transport problem: oxide stoichiometry, electroneutrality and the source ...

Surface Aeration System Modeling using COMSOL

G. Selembo, P. Selembo, J. Stanton, and G. Paulsen
University of North Carolina
Charlotte, NC

Surface aeration systems are used in the wastewater treatment industry for the transfer of oxygen in the activated sludge process. These systems are capital intensive and also require a significant amount of energy to operate. Scale-up and design of these systems is largely empirical, and due to the size of these systems, modifications for experimental testing can be economically prohibitive. ...

Capacitive Deionization for Desalinating Complex Streams - new

D. Cardoen[1,2], B. B. Sales[1], J. Helsen[1], A. Verliefde[2]
[1]VITO, Mol, Belgium
[2]Ghent University, Ghent, Belgium

Capacitive deionization (CDI) is a desalination technology which is based on the storage of ions in the electrical double layer of a pair of oppositely polarized porous carbon electrodes, which are usually assembled using activated carbon particles (Figure 1). It is efficiently deployed for desalinating water with moderate salt content (eg in domestic water softening)[1]. To broaden its ...

Fluid Flow and Heat Transfer Characteristics in a Stirred Cell System for Crude Oil Fouling

M. Yang[1], A. Young[1], and B. Crittenden[1]

[1]Department of Chemical Engineering University of Bath, Bath, United Kingdom

A small batch stirred cell which is operated at temperatures up to 400 °C and pressures up to 30 bar is used to study fouling behaviors of selected crude oils. COMSOL Multiphysics package is used for the CFD (Computational Fluid Dynamics) and heat transfer modeling for this stirred cell system. The simulation results are validated against the measured temperature data at various axial ...

Impact Assessment of Hydrologic and Operational Factors on the Efficiency of Managed Aquifer Recharge Scheme

M.A. Rahman[1], P. Oberdorfer[1], Y. Jin[1], M. Pervin[1], E. Holzbecher[1]
[1]Department of Applied Geology, Geoscience Center, University of Göttingen, Göttingen, Lower Saxony, Germany

Due to increased demands on groundwater accompanied by increased drawdowns (ca. 2-3 meters/year), technologies that use alternative water resources have been suggested for Dhaka City, Bangladesh. Preliminary studies show that managed aquifer recharge (MAR) would help in optimal use of available water resources and to reduce adverse effects of pumping in the Dupitila aquifer of the city. In this ...

Computer-aided Design of the Heating Section of a Continuous Kheer (Rice Pudding)-making Machine

S. Kadam[1], T. Gulati[2], A. Datta[1]
[1]Indian Institute of Technology, Kharagpur, India
[2]Cornell University, Ithaca, NY, USA

Kheer is a popular Indian dairy dessert prepared from concentrating milk with simultaneous cooking of rice grains. Conventional methods of preparing kheer have limited its mechanized production. Therefore, a conceptual design of continuous kheer-making machine has been prepared which among other components consists of a heating section for cooking kheer. The present study investigates the CFD ...

Modelling of a Wool Hydrolysis Reactor - new

M. Giansetti[1], A. Pezzin[1], S. Sicardi[1], G. Rovero[1]
[1]Politecnico di Torino, Torino, Italy

The Life+ GreenWoolF project is aimed at demonstrating that green hydrolysis with superheated water is an effective way to convert wool wastes into organic nitrogen fertilizers. The core of the process is represented by the reaction tank (Figure 1) in which the hydrolyses reaction takes place. The temperature of the material during the reaction is one of the most influencing parameter and has to ...

Multiphysical Modeling of Calcium Carbonate Transportation in UV Disinfection in Water Treatment

E. R. Blatchley[1], and B.Z. Sun[1]
[1]Department of Civil Engineering, Purdue University, West Lafayette, IN, USA

Mineral precipitation on to the quartz surface of the lamp jackets in UV disinfection process (fouling) has been recognized as a major problem for UV radiation delivery during disinfection operation. Fouling behavior was observed to be induced thermally and influenced by hydraulic character of the UV disinfection configuration. Fouling process involves momentum, heat, and mass transport within ...