Veröffentlichungen und Präsentationen

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Creating Business Opportunities using Mathematical Modeling

E. M. Fontes
Catella Generics AB

Computational mathematical modeling has allowed scientists and engineers to perform better, faster, and more economical virtual experiments. Through mathematical modeling, an application expert can simulate performance characteristics during different operating conditions and thereby accelerate the pace of understanding new electrochemical system in relation to specific application ...

Modeling Of A Strongly Coupled Thermal, Hydraulic And Chemical Problem: Drying And Low-Temperature Pyrolysis Of Chromated Copper Arsenate (CCA)-Wood Waste Particles In A Moving Bed Reactor

J. Govaerts[1], and L. Helsen[2]
[1]SCK-CEN, Belgian Nuclear Research Centre, Performance Assessment Unit, Mol, Belgium
[2]Department of Mechanical Engineering, Division of Applied Mechanics and Energy Conversion, Katholieke Universiteit Leuven, Heverlee, Belgium

Low temperature thermal carbonisation might be the ultimate solution to the growing disposal problem of CopperChromeArsenic-treated waste wood. This energy and material recuperating technology is currently in the process of upscaling to an industrial level. In the present study, a numerical model is developed in COMSOL Multiphysics that allows to investigate the temperature profiles, gas ...

Analysis of Superheater Tubes with Mutual Irradiation as Applied to a Solar Receiver Steam Generator

N. Lemcoff[1], S. Wyatt[2]
[1]Rensselaer Polytechnic Institute, Hartford, CT, USA
[2]Alstom Power, Windsor, CT, USA

The objective of this paper is to analyze the temperature variations within a superheater tube of a solar receiver steam generator. The tube is heated by concentrated, collimated solar irradiation with major cooling by an internal steam flow. The influence of heat loss by radiation, internal convection, and conduction are considered. Analytical models are obtained for an isolated tube, and the ...

Void Shape Evolution of Silicon: Level-Set Approach

C. Grau Turuelo[1], C. Breitkopf[1]
[1]Technische Universität Dresden, Dresden, Germany

The void shape evolution of silicon is a process driven mainly by surface diffusion which leads to a geometrical transformation of trenches etched in silicon wafers due to surface energy minimization. The temperature, the ambient gas and the annealing time affect the velocity of the process. The use of custom PDEs in COMSOL Multiphysics® software and the Level-Set method provide a good base ...

CFD/Electromagnetics Interactions via Realistic Heat and Mass Transfer to Moist Substrates

G. Ruocco[1], M. V. De Bonis[2]
[1]Engineering College, University of Basilicata, Potenza, Italy
[2]I​nstitute of Food Science and Production, National Research Council, Bari, I​taly

Localized convection heat and mass transfer can be intensified and optimized by providing exposure to electromagnetic energy. Conjugate heat and mass transfer are configured by solving the momentum, heat and mass transfer simultaneously in both solid (substrate, comprising of a two-phase chemical species) and fluid (auxiliary air) phases. In this way the heat and mass fluxes vary seamlessly ...

Fluid Dynamics Analysis of Gas Stream in a Plasma Torch Reactor

C. Soares[1], N. Padoin[1], F. A. Cassini[1], M. Sanchez[2]
[1]Federal University of Santa Catarina, Florianópolis, SC, Brazil
[2]University of Oklahoma, Norman, OK, USA

Plasma technology has potential applications in a wide range of areas, such as microwave reflectors/absorbers, material processing, sterilization and chemical neutralization. The knowledge about the fluid behavior in such systems has a central role, since the stability of the flow in the region of the electrical arc is essential for the development of a well-behaved torch. In this work, a ...

Numerical modeling of coupled heat and mass transport during frying and cooling of wood in contact with oil

Grenier, D.1, 2, Bohuon, P.1, 3, Baillière, H.1, Ben Lalli, A., Méot, J.M.1
1 CIRAD, Montpellier cedex, France
2 CTBA, Bordeaux cedex, France
3 ENSIA, 1101, Montpellier cedex, France

This paper proposes a model of coupled heat and mass (water, oil) transport in a porous medium (timber) soaked first in a hot oil bath, then in a cold oil bath. The timber is soaked at hot temperature to dry it (water vaporization, resulting in increased pressure and therefore vapor transport) and at cold temperature to treat it (vapor condensation, resulting in decreased pressure and oil ...

Surface tension driven flow during oxygen top blowing of liquid copper

Marin, T.1, 2, Utigard, T.1
1 Univeristy of Toronto, Materials Science and Engineering
2 Universidad de Chile, Departamento de Ingenieria de Minas

The rate of liquid copper oxidation plays an important role in the separation of impurities from copper during fire refining. A finite elements numerical model using FEMLAB 3.1 for the oxidation of liquid copper during top blowing of oxygen/nitrogen mixtures is presented and compared to experimental results. In this model, surface tension driven flow arising from gradients of oxygen ...

FEMLAB/MATLAB model for complex electric swing adsorption (ESA) system with in-vessel condensation

Petkovska, M.1, Antov-Bozalo, D.1, Markovic A.1, Sullivan, P.2
1 Faculty of Technology and Metallurgy, University of Belgrade Karnegijeva 4, Belgrade, Serbia and Montenegro
2 AFRL/MLQF, Tyndall AFB, FL, USA

The subject of this investigation is a recently developed Electric Swing Adsorption (ESA) system (adsorption cycle with electrothermal desorption step, which is performed by direct heating of the adsorbent particles by passing electric current through them), with an adsorber assembled of two annular, radial-flow, cartridge-type fixed-beds, with in-vessel condensation. Three FEMLAB models were ...

FEMLAB simulation of thermoplastics injection-molding

Varela, A.E., Suárez, M.
Universidad de Carabobo, Facultad de Ingeniería, Valencia, Venezuela

The thermoplastics injection-molding process of has become one of the most important polymer processing operations in the production of molded parts with geometric complexity and high precision. Modeling and computer simulation of this process is not an easy task. Commercial computer packages have been designed for the simulation of the injection molding process. These programs allow the ...

Quick Search