Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Simulation and Validation of Pan Evaporation Rates Using COMSOL Multiphysics® Software

L. J. Matel [1]
[1] Green Streets Infrastructure LLC, Seattle, WA, USA

The four foot diameter class A evaporation pan is used by the scientific community as the standard for determining evaporation rates for a number of purposes. The COMSOL Multiphysics® software provides the necessary tools to adequately develop synthetic estimates of evaporation values for input into hydrologic simulation models and other earth science applications. This paper presents ...

Cycling-Induced Degradation of Batteries

M. Vallance [1], A. Meshkov [1], R. White [2], M. Guo [2], S. Rayman [2], L. Cai [2]
[1] GE Global Research, Niskayuna, NY, USA
[2] R.E. White & Associates, Columbia, SC, USA

Rechargeable batteries solve electrification and communication problems. As examples, hybrid battery-diesel generator power supplies efficiently power cell towers in remote locations, detached from the power grid. Large battery banks are used to load level user power requirements, reducing stress on power generation infrastructure. Batteries firm the output capacity of intermittent wind ...

Simulation and Experimental Analysis of Drug Release Rates from Magnetic Nanocomposite Spheres - new

L. Saeeednia[1], H. Mehraein[2], F. Abedin[1], K. Cluff[2], R. Asmatulu[1]
[1]Department of Mechanical Engineering, Wichita State University, Wichita, KS, USA
[2]Department of Bioengineering, Wichita State University, Wichita, KS, USA

Targeted drug delivery systems have been wildly studied in cancer therapy due to the toxicity of most of chemotherapeutic drugs. Nanoparticles can be attached to the small molecules of the drugs and serve as drug carriers to deliver the drug molecules into the area of interest. In this research, polymeric microspheres containing biodegradable poly(D, L-lactide-co-glycolide) (PLGA), magnetic ...

Fundamental Three Dimensional Modeling and Parameter Estimation of a Diesel Oxidation Catalyst for Heavy Duty Trucks

A. Holmqvist[1] and C.U.I. Odenbrand[1]


[1]Department of Chemical Engineering, Faculty of Engineering, LTH, Lund University, Lund, Sweden

Mathematical optimization can be used as a computational engine to generate the best solution for a given problem in a systematic and efficient way. In the context of monolithic converter systems, the parameter estimation problem (or inverse problem) is solved using Partial Differential Equations (PDE)-based models of the physical system coupled with an optimization algorithm. These problems are ...

Model of a Heavy Metal Adsorption System using the S-Layer of Bacillus Sphaericus

J. Orjuela, and A. González
Dept. de Ingeniería Química Facultad de Ingeniería
Universidad de los Andes
Bogotá
Colombia

A bidimensional and pseudo homogenous model was proposed for the study of mass transfer in the bioadsorption process of chromium VI in the S-layer of immobilized Bacillus sphaericus in a packed column. The implementation of such a model in COMSOL Multiphysics will be explained in detail and the final results presented. These include chromium concentration profiles along the column and its ...

Modeling Flow and Deformation during Hot Air Puffing of Single Rice Kernels

T. Gulati[1], A. Datta[1]
[1]Cornell University, Ithaca, NY, USA

When rice is subjected to intense heating, it results in rapid evaporation of liquid water to vapor. As a consequence, large pressures are generated within the kernel in a span of 15s resulting in large volume changes causing the kernel to puff rapidly. Under suitable conditions, the ratio of initial volume to volume after puffing could be as high as 10. Rice puffing process is a complex ...

Computational Modelling of Fluid Dynamics in Electropolishing of Radiofrequency Accelerating Cavities - new

H. Rana[1], L. Ferreira[2]
[1]Loughborough University, Leicestershire, UK
[2]European Organisation for Nuclear Research (CERN), Genéve, Switzerland

Electropolishing is an electrochemical process that radiofrequency accelerating cavities undergo in order to improve their inner metal surface finishing. This is performed prior to their installation into particle accelerators, in order to enhance their accelerating properties. Using COMSOL Multiphysics® software it was possible to model the process throughout the cavity and study the fluid ...

Modeling the Rheology of Liquid Detergents

Vincenzo Guida
R&D Process Design Principal Engineer, Procter & Gamble, Italy

Outline of presentation: Comsol is a very flexible platform, ideal to model rheology modification under flow Analogy with reactive flows allows modeling of both thixotropy and gelation with decent level of accuracy and predictability It is possible, to a certain extent, to use 1D rheology to extrapolate 3D behavior ---------------------------------- Keynote speaker's biography:Vincenzo ...

Full System Modeling and Validation of the Carbon Dioxide Removal Assembly - new

R. F. Coker[1], J. Knox[1]
[1]NASA Marshall Space Flight Center, Huntsville, AL, USA

The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper describes ...

Analyzing a Malfunctioning Clarifier with COMSOL’s Mixture Model

A. de Niet, A. van Nieuwenhuijzen, and A. Geilvoet
Witteveen+Bos, Deventer, The Netherlands

Clarifiers are used to separate sludge and water in waste water treatment plants. In this paper we analyze a malfunctioning clarifier using the mixture model. We are able to receive model results that are reasonably close to measurements from the real clarifier. With the model we can explain the bad separation of water and sludge in the clarifier. Engineers have proposed several actions in order ...