Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Reverse Electrodialysis Process with Seawater and Concentrated Brines: a COMSOL Multiphysics® Model for Equipment Design

M. Tedesco[1], A. Cipollina[1], C. Scavuzzo[1], A. Tamburini[1], G. Micale[1]
[1]Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica (DICGIM), Università di Palermo (UNIPA), Palermo, Italy

Salinity Gradient Power (SGP) is a promising renewable energy source associated to the controlled mixing of two aqueous solutions of different salinities. Recently, Reverse Electrodialysis process (SGP-RE, or RED) has been identified as a successful way for the exploitation of such energy source, allowing the conversion of SGP directly into electric energy. COMSOL Multiphysics® modelling ...

Modeling of Fluid Flow and Heat Transfer During a Steam-Thermolysis Process for Recycling Carbon Fiber Reinforced Polymer

A. Oliveira Nunes[1], Y. Soudais[1], R. Barna[1], A. Bounacer[1], Y. Yang[1]
[1]Centre RAPSODEE - Ecole des Mines d'Albi, Albi, France

Different types of technologies to recycle carbon fiber reinforced polymer (CFRP) waste have been studied, for example: pyrolysis, solvolysis and steam-thermolysis. The steam-thermolysis is a process that combines pyrolysis and superheated steam at atmospheric pressure to decompose the organic matrix of the composite. The waste is introduced into a bench-scale reactor heated at high temperatures ...

Experimental and Numerical Study of Microbial Improved Oil Recovery in a Pore Scale Model by using COMSOL

M. Shabani Afrapoli, L. Shidong, S. Alipour , and O. Torsaeter
Department of Petroleum Engineering and Applied Geophysics
NTNU
Trondheim, Norway

A number of visualization experiments are carried out at the laboratory temperature with oil, brine and bacteria suspension for evaluating the performance of MIOR in a glass micromodel. The observations show the effects of bacteria on remaining oil saturation. The interfacial tension reduction, wettability alteration and flow pattern changes are recognized as active mechanisms. COMSOL ...

Drug Distribution in the Human Eye

L. Murtomäki[1], T. Kainuvaara[1]
[1]University of Helsinki, Helsinki, Finland

Drug therapy of the posterior segment of an eye is very challenging due to the difficult accessibility. Modern drugs often are large molecules, such as peptides, antibodies or oligonucleotides which are administrated, e.g. by intravitreous injections which requires clinical conditions. Computer modeling can be helpful in designing new and less invasive routes of drug administration. COMSOL is ...

A 2D Model of the Flow in Hydrocyclones - new

B. Chinè[1], F. Concha[2], M. Meneses G.[3]
[1]School of Materials Science and Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica
[2]Department of Metallurgical Engineering, University of Concepcion, Concepcion, Chile
[3]School of Production Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica

Hydrocyclones are industrial devices used as processing units in fluid and particle technology. A hydrocyclone is an apparatus consisting of a cylindrical or a cylindrical-conical body with a tangential or involute entrance to admit the fluid inside. There are also two opposite exits, the top exit which is the vortex finder and the bottom exit called apex. Fig. 1 shows the schematic of a widely ...

High Temperature Process Simulation: An Example in Crystal Growth

H. Rouch[1] and O. Geoffroy[1]
[1]INOPRO, Villard de Lans, France

High temperature processes are used in a large variety of industrial application. Simulation helps to solve technological problems and increase energy efficiency in case of industrial scale simulation. We present in this paper a research equipment simulation. The aim is to increase knowledge of temperature field in the crystal growth region in order to give researcher some important information ...

Modeling of High-Temperature Ceramic Membranes for Oxygen Separation

J.M. Gozálvez-Zafrilla[1], J.M. Serra[2], and A. Santafé-Moros[1]

[1]Chemical and Nuclear Engineering Depart., Universidad Politécnica de Valencia, Valencia, Spain
[2]Instituto de Tecnología Química, Valencia, Spain

Oxygen transfer through ceramic membranes at high-temperature can substantially reduce costs respect to conventional separation methods. With the aim to improve the determination of the properties of the ceramic materials, a lab-scale permeation set-up was modeled using the Chemical Engineering Module of COMSOL Multiphysics®. The solution required the coupling of three domains. Gas flow was ...

COMSOL Multiphysics for Efficient Solution of a Transient Reaction-Diffusion System with Fast Reaction

M.K. Gobbert[1], A. Churchill[1], G. Wang[1], and T.I. Seidman[1]
[1]Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland, USA

A reaction between chemical species is modeled by a particular reaction pathway, in which one reaction is very fast relative to the other one. The diffusion controlled reactions of these species together with a reaction intermediate are described by a system of three transient reaction diffusion equations over a two-dimensional spatial domain. In the asymptotic limit of the reaction parameter ...

Numerical Simulation of Warm-Air Drying of Mexican Softwood (Pinus Pseudostrobus)

S. Sandoval Torres[1], E. Hernández-Bautista[1], J. Rodríguez-Ramírez[1], A. Carrillo Parra[2]
[1]Instituto Politécnico Nacional, CIIDIR, Oaxaca, Mexico
[2]Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León, Linares, N.L. México

In this work, the numerical simulation of Mexican softwood (Pinus pesudostrobus) drying is presented by solving a physics-based model. The model was developed by considering the heat and mass transport and the representative elementary volume, which involves the solid, liquid and gas phases. We solved a system of partial differential equations by numerical factorization in COMSOL Multiphysics 3 ...

Phase Field Modeling of Helium Precipitate Networks on Solid-state Interfaces

D. Yuryev[1], M. Demkowicz [1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

We describe simulations performed in COMSOL Multiphysics® of the precipitation of helium (He) on solid-state interfaces. The non-uniform precipitation of He at certain interfaces is a result of a heterogeneous energy distribution in the interface plane: He wets high interface energy (“heliophilic”) regions but does not wet low interface energy (“heliophobic”) ones. Using a phase-field model, ...