Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird

Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.


Sehen Sie sich die Kollektion für die COMSOL Conference 2023 an

Transport Phenomenax

Numerical Modeling of Heat and Mass Transfer in Porous Materials During Drying and Shrinkage

D. Lelièvre[1], P. Glouannec[1]
[1]Université de Bretagne-Sud, Lorient, France

Drying is an essential step in many manufacturing processes, for it will have an important impact on the product quality. This is why many numerical models have been realized over decades, in order to predict the hygrothermal behavior of porous media during the drying process. In this ... Mehr lesen

Modeling and Optimization of a Mg-Metal Hydride Rectangular Tank in the Hydriding Process

E.I. Gkanas[1], S.S. Makridis[1], A.K. Stubos[2], A. Lopez[3], J. Folch[4], G. Noriega[4]
[1]Materials for Energy Applications Group, Department of Mechanical Engineering, University of Western Macedonia, Greece
[2]Environmental Technology Laboratory, Institute of Nuclear Technology and Radiation Protection, NCSR “Demokritos”, Greece
[3]Universidad Politécnica De Cataluña, Barcelona, Spain
[4]Cidete INGENIEROS, Barcelona, Spain

Hydrogen storage can be considered as a key factor in the development of hydrogen economy. Hydrogen storage in a magnesium hydride MgH2 is a very promising technique for numerous of reasons. Magnesium is abundant, relatively cheap, life – friendly , weight storage capacity of 7.6% ... Mehr lesen

Theoretical Simulations of Silicon-On-Nothing (SON) Structures

C. Grau Turuelo[1], B. Bergmann[1], C. Breitkopf[1], F. Hoffmann[2], L. Brencher[2]
[1]Technische Universität Dresden, Dresden, Saxony, Germany
[2]Infineon Technologies GmbH, Dresden, Dresden, Saxony, Germany

A novel technique for semiconductor manufacturing is introduced: Silicon-On-Nothing. This process consists of an initial cylindrical trench which has a shape evolution under certain conditions: high temperature (1100 °C), low pressure (10 Torr) and a non-oxidizing atmosphere such as ... Mehr lesen

3D Simulation of Air-Glass Heat Exchange in a Set of Vials

G. Mongatti[1], A. Borelli[1]
[1]Marchesini Group, Pianoro, Italy

In this model a three-dimensional heat transfer analysis was performed by using COMSOL Multiphysics\' Heat Transfer Module. The model is about the heating of a set of vials (Figure 1) in a current of hot air in the laminar regime. We used time dependent studies to predict the thermal ... Mehr lesen

Numerical Simulation of Warm-Air Drying of Mexican Softwood (Pinus Pseudostrobus)

S. Sandoval Torres[1], E. Hernández-Bautista[1], J. Rodríguez-Ramírez[1], A. Carrillo Parra[2]
[1]Instituto Politécnico Nacional, CIIDIR, Oaxaca, Mexico
[2]Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León, Linares, N.L. México

In this work, the numerical simulation of Mexican softwood (Pinus pesudostrobus) drying is presented by solving a physics-based model. The model was developed by considering the heat and mass transport and the representative elementary volume, which involves the solid, liquid and gas ... Mehr lesen

A Mathematical Tool for Studying Drug Delivery to the Eye in Case of Glaucoma

P. Silva[1], J.A. Ferreira[2], P. de Oliveira[2]
[1]Coimbra Institute of Engineering, CMUC, Coimbra, Portugal
[2]Department of Mathematics University of Coimbra, CMUC, Coimbra, Portugal

The aim of the poster is to present a coupled 2D mathematical model to predict the evolution of drug concentration - in the cornea and in the anterior chamber of the eye - when therapeutic lenses are used (Figure 1). The mathematical model takes into account (i) diffusion processes in ... Mehr lesen

Using Temperature Signals to Estimate Geometry Parameters in Fractured Geothermal Reservoirs

F. Maier[1], P. Oberdorfer[1], I. Kocabas[2], I. Ghergut[1], M. Sauter[1]
[1]Dpt. Applied Geology, Center of Geosciences, Georg-August-University, Göttingen, Germany
[2]Petroleum and Natural Gas Engineering Department Batman, Batman University, Batman, Turkey

We compare the output of 2D single fracture models as well as analytical solutions of the problem. The temperature signal is evaluated with the heat transfer mode while the flow field is assumed to exhibit Darcy flow everywhere. The problem is time-dependent so we have to take into ... Mehr lesen

Heat and Mass Transfer in Reactive Multilayer Systems (RMS)

M. Rühl[1], G. Dietrich[2], E. Pflug[1], S. Braun[2], A. Leson[2]
[1]TU Dresden, Laser and Surface Technology, Dresden, Germany
[2]IWS Dresden, Fraunhofer Institute for Material and Beam Technology, Dresden, Germany

Established joining techniques like welding, soldering or brazing typically are characterized by a large amount of heat load of the components. Especially in the case of heat sensitive structures like MEMS this often results in stress induced deformation and degradation or even damaging ... Mehr lesen

Comparison of Heat and Mass Transport at the Micro-Scale

E. Holzbecher[1], S. Oehlmann[1]
[1]Georg-August Universität Göttingen, Göttingen, Germany

Phenomena of heat and mass transfer are often compared, in various porous media applications. Questions of practical interest are, for example, if tracers can be used for the prediction of heat flow, or vice versa if heat can be utilized as, possibly retarded, tracer for predicting the ... Mehr lesen

Numerical Simulation of Recovery of Light Oil by Medium Temperature Oxidation in Porous Media

N. Khoshenvis Gargar[1], A. Mailybaev[2], D. Marchesin[2], H. Bruining[1]
[1]Delft University of Technology, Delft, The Netherlands
[2]Instituto Nacional de Matematica Pura e Aplicada, Rio de Janeiro, Brazil

One of the methods to recover oil from medium and low viscosity in complex reservoirs uses air injection leading to oil combustion. In this case the oxygen in the air burns the heavier components of the oil, generating a heat wave leading to vaporization of lighter components. In this ... Mehr lesen