Die Modell Galerie umfasst COMSOL Multiphysics Modelldateien aus einer Vielzahl von Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Sie können fertige Modelle herunterladen sowie Schritt-für-Schritt-Anleitungen, mit denen Sie die Modelle nachbauen können, und verwenden Sie die Modelle als Ausgangspunkt für Ihre eigenen Anwendungen. Nutzen Sie die Quick Search, um die für Ihren Fachbereich relevanten Modelle zu finden. Um die Dateien herunterzuladen, loggen Sie sich ein oder erzeugen Sie einen COMSOL Access Account, der mit einer gültigen COMSOL Lizenz assoziiert ist.

Frequency Selective Surface, Periodic Complementary Split Ring Resonator

Frequency selective surfaces (FSS) are periodic structures with a bandpass or a bandstop frequency response. This model shows that only signals around the center frequency can pass through the periodic complimentary split ring resonator layer.

Pore-Scale Flow

This non-conventional model of porous media flow utilizes creeping (Stokes) flow in the interstices of a porous media. The model comes from the pore-scale flow experiments conducted by Arturo Keller, Maria Auset, and Sanya Sirivithayapakorn of the University of California, Santa Barbara. The geometry used in the model was produced by scanning electron microscope images. In this example, we take ...

Fluid-Structure Interaction in a Network of Blood Vessels

This model refers to a portion of the vascular system of a young child - the upper part of the aorta artery. The blood vessels are embedded in a biological tissue (the cardiac muscle) and, during the flow of blood, pressure is applied to the internal surfaces producing deformation of the vessel walls. The complete analysis consists of two distinct but coupled procedures: a fluid-dynamics ...

Acoustic Transmission Loss through Periodic Elastic Structures

In this model, two fluids are separated by a solid elastic structure. An acoustic pressure wave impacts the structure resulting in a reflected wave and a wave transmitted with a loss through the structure. This model investigates the transmission loss through the structure. The effects of incident angle, frequency, and dampings are studied. Important features used: Acoustic-structure ...

Effective Diffusivity in Porous Materials

Transport through porous structures is usually treated using simplified homogeneous models with effective transport properties. This is in most cases a necessity, since the typical dimensions of the pores and particles making up the porous structure are several orders of magnitude smaller than the size of the domain that is to be modeled. This model introduces the concept of effective ...

Loudspeaker Driver

This example shows you how to model a loudspeaker of the dynamic cone driver type, common for low and medium frequencies. The model analysis includes the total electric impedance and the on-axis sound pressure level at a nominal driving voltage, as functions of the frequency. The spatial characteristics of the speaker are depicted in a directivity plot. The tutorial model is set up using a ...

Simulating Wireless Power Transfer in Circular Loop Antennas

This model addresses the concept of wireless power transfer by studying the energy coupling between two circular loop antennas tuned for UHF RFID frequency whose size is reduced using chip inductors. The circular loop antenna provides inherent inductive coupling by its shape, and it can be easily miniaturized for low frequency applications. While the orientation of a transmitting antenna is ...

Cooling and Solidification of Metal

This example is a model of a continuous casting process. Liquid metal is poured into a mold of uniform cross section. The outside of the mold is cooled and the metal solidifies as it flows through. When the metal leaves the mold, it is completely solidified on the outside, but still liquid inside. The metal will continue to cool and eventually solidify completely, at which point it can be cut ...

Axisymmetric Transient Heat Transfer

This is a benchmark model for an axisymmetric transient thermal analysis. The temperature on the boundaries changes from 0 degrees C to 1000 degrees C at the start of the simulation. The temperature at 190 s from the anlysis is compared with a NAFEMS benchmark solution.

Free Convection in a Light Bulb

This model treats the free convection of argon gas within a light bulb. It shows the coupling of heat transport (conduction, radiation and convection) to momentum transport (non-isothermal flow) induced by density variations caused by temperature. COMSOL Multiphysics model makes it possible to determine the temperature distribution on the outer surface of the bulb, as well as the temperature ...