Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Theory of Proportional Solenoids and Magnetic Force Calculation Using COMSOL Multiphysics

O. Vogel, and J. Ulm
Heilbronn University
Campus Künzelsau
Künzelsau, Germany

Proportional solenoids are well-known and used in a wide range of applications today. This paper is about methods of influencing the characteristic force-stroke-curves of magnetic actuators by means of different pole geometries. The conical design of the stator pole which is mostly used to accomplish proportional solenoids is analyzed by both a simple analytic reluctance model and a FEM model ...

Lamb Waves and Dispersion Curves in Plates and It’s Applications in NDE Experiences Using Comsol Multiphysics

P. Gómez, J. P. Fernandez, and P. D. García
Hydro-Geophysics & NDE Modeling Unit
University of Oviedo
Mieres, Spain

In this paper, a model for numerically obtaining lamb wave modes and dispersion curves in plates is presented. It is shown that COMSOL Multiphysics can be employed to simulate the behavior of guided waves in dispersive plates, which is useful for NDE applications. A two dimensional steel plate (4x0.1 meters) is excited with a space-time impact point source. To model the point source, we use ...

Analysis Of Linearly Polarized Modes

I. Avram, and I. Gavril Tarnovan
The Technical University of Cluj Napoca
Cluj, Romania

This paper presents a study on the propagation modes of electromagnetic waves through a step index fiber optics. To analyze the propagation of electromagnetic field, a simulation in Comsol 4.0 has been implemented using two different optical fibers. Obtaining the propagation modes, called linearly polarized modes (LPnm) to get their characterization according to the radial and azimuthal ...

Design and Optimization of a High Performance Ultrasound Imaging Probe Through FEM and KLM Model

L. Spicci, and M. Cati
Esaote SpA
Florence, Italy

The present paper describes the development of a full FEM model for linear array high performance 5MHz ultrasound imaging transducer. As a preliminary design, a mono dimensional electro-acoustical KLM model was realized, then the complete FEM was developed and optimized. The optimized transducer was manufactured, so that agreement between transducer measured performances and simulation ...

Transient Modelling of a Fluorine Electrolysis Cell; Fully Coupled Electric Currents, Heat-Transfer, Diluted Species Transport and Laminar Bubbly Flow

R. Pretorius[1], P. L. Crouse[1], and C. J. Hattingh[2]
[1]University of Pretoria, Pretoria, Gauteng, South Africa
[2]Metallurgical Testing and Consultation (MTC) cc, Farrarmere, South Africa

A laboratory-scale fluorine reactor was simulated with COMSOL Multiphysics®. This model employs fundamental fully coupled electron-, heat-, mass- and momentum transfer (two-phase) equations to deliver a transient model of the above-mentioned reactor. Quasi-steady-state results were produced for the current density, electric field, temperature, reactive species concentration, gas- and liquid ...

Multiphysics Design of ESS-Bilbao Linac Accelerating Cavities Using COMSOL

J. L. Munoz, and I. Rodriguez
Bilbao, Spain

A proton linac drives particles using the electric field of a high power RF standing wave in a resonant cavity. The design of these cavities involve several aspects of multiphysics simulation, that have been accomplished using COMSOL. The first step consist on the geometric optimization of the cavities in order to have the correct frequency while maximizing some figures of merit. This task ...

Analytical and Experimental Validation of Electromagnetic Simulations Using COMSOL®, re Inductance, Induction Heating and Magnetic Fields

M. W. Kennedy, S. Akhtar, J. A. Bakken, and R. E. Aune
Norwegian University of Science and Technology (NTNU)
Trondheim, Norway

This paper presents a snap shot of experimental work, which has been conducted at NTNU on billet heating with induction coils. A significant volume of experimental data have been collected for coils running with up to 0.2T: high accuracy Hall probe readings (+/-1%), metal conductivity (+/-0.5%), and heat generation (+/- 4%) have been collected. Results are analyzed using newly developed ...

Excimer Laser-Annealing of Amorphous Silicon Layers

J. Förster, and H. Vogt
Institute of Electronic Components and Circuits
University Duisburg-Essen
Duisburg, Germany

A one-dimensional model of Excimer Laser-Annealing of amorphous silicon layers which are irradiated with a KrF excimer laser is described. For realisation, the application mode heat transfer in solids is used. The model predicts a melt threshold for the energy density of the laser of 88.5 mJ/cm^2. It also predicts a linear increase of the melt duration with a slope of approximately 625 (ns*cm^2) ...

Analysis of a Three-phase Transformer Using COMSOL Multiphysics and a Virtual Reality Environment

A.Buchau, and W. M. Rucker
Institut für Theorie der Elektrotechnik
Universität Stuttgart
Stuttgart, Germany

The simulation software COMSOL Multiphysics is applied to the numerical com-putation of the magnetic fields of a three-phase transformer. A three-dimensional model of the geometrical configuration is created with the help of the CAD tools of COMSOL Multiphysics. There, all dimensions of the transformer are defined by parameters. The creation of an optimal finite element mesh is improved by some ...

Efficient Simulation of 3D Electro-optical Waveguides Using the Effective Refractive Index Method

M. Herlitschke, M. Blasl, and F. Costache
Fraunhofer Institute for Photonic Microsystems
Dresden, Germany

3D FEM simulation of millimeter-scale, complex electro-optically induced waveguide based devices demands the use of grids with more than several million nodes. Hence the simulation could take substantial time and require large amounts of available memory. This paper presents a computation algorithm based on the conversion of an initial 3D waveguide structure into an analogous 2D structure, ...

1 - 10 of 167 First | < Previous | Next > | Last