Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Analysis of a Three-phase Transformer Using COMSOL Multiphysics and a Virtual Reality Environment

A.Buchau, and W. M. Rucker
Institut für Theorie der Elektrotechnik
Universität Stuttgart
Stuttgart, Germany

The simulation software COMSOL Multiphysics is applied to the numerical com-putation of the magnetic fields of a three-phase transformer. A three-dimensional model of the geometrical configuration is created with the help of the CAD tools of COMSOL Multiphysics. There, all dimensions of the transformer are defined by parameters. The creation of an optimal finite element mesh is improved by some ...

Current Distribution and Magnetic Fields in Complex Structures Using Comsol Multiphysics

S. F. Madsen, and C. Falkenstrøm Mieritz
Highvoltage.dk ApS
Lejre, Denmark

The present paper presents numerical calculations of the magnetic fields and the current distribution within a wind turbine nacelle. The results are used by control system engineers designing panels and cables, who must ensure that the immunity of the equipment complies with the environment within the turbine. Since the release of the International standard concerning lightning protection of ...

Numerical Modeling of Cold Crucible Induction Melting

I. Quintana[1], Z. Azpilgain[1], D. Pardo[2], and I. Hurtado[1]
[1]Mechanical and Industrial Production Department, Faculty of Engineering, Mondragon Unibertsitatea, Loramendi 4, Mondragon 20500 Gipuzkoa, Spain
[2]Department of Applied Mathematics, Statistics, and Operational Research, University of the Basque Country (UPV/EHU), Leioa, Spain, and IKERBASQUE (Basque Foundation for Sciences), Bilbao, Spain

This paper describes a numerical solution method for the simulation of a cold crucible induction melting (CCIM) process involving the coupling of electromagnetic, temperature and turbulent velocity fields. During the CCIM process, the metal charge is contained on a water cooled segmented copper crucible, and the energy necessary to heat, melt, and overheat the charge is generated by an ...

Simulation of Passive Magnetic Bearing Using COMSOL Multiphysics

K. Falkowski
Military University of Technology
Warsaw, Poland

The article presents the process of verification of the passive magnetic bearing by the Comsol Multiphysic program. There is shown construction of the radial passive magnetic bearing PMB60x85x20-5, which was designed in the Military University of Technology. The distribution of the magnetic flux density and the static characteristic of the bearing were estimated by the Comsol Multiphysic. The ...

The Microplane Model for Concrete in COMSOL

A. Frigerio
RSE S.p.A.
Milan, Italy

The safety of large civil structures is often evaluated by means of numerical models based on the Finite Element Method. In this frame, the choice of a constitutive law able to represent the complex mechanical behaviour of concrete is a key point. This paper deals with a detail description of all the steps needed to implement the Microplane Model in COMSOL; the formulation is based on the ...

Design and Development, via Prototype Testing and Multiphysics Modelling, of a Thermoelectric Generator (TEG) for Integration in Autonomous Gas Heaters

M. P. Codecasa[1], C. Fanciulli[1], R. Gaddi[2], F. Gomez Paz[3], and F. Passaretti[1]
[1]National Research Council of Italy - IENI Institute, Lecco, Italy
[2]Italkero S.r.l., Modena, Italy
[3]Studio di design Francisco Gomez Paz, Milano, Italy

An autonomous gas-heater for outdoor environments was selected as a test-case for cogeneration in gas-heaters and stoves, permitting installation and operation without need of an electrical network connection. A thermoelectric generator (TEG) was designed, converting part of produced heat into electrical power for auxiliaries (ventilation) or ancillary functions (illumination). Design approach, ...

Efficient Simulation of 3D Electro-optical Waveguides Using the Effective Refractive Index Method

M. Herlitschke, M. Blasl, and F. Costache
Fraunhofer Institute for Photonic Microsystems
Dresden, Germany

3D FEM simulation of millimeter-scale, complex electro-optically induced waveguide based devices demands the use of grids with more than several million nodes. Hence the simulation could take substantial time and require large amounts of available memory. This paper presents a computation algorithm based on the conversion of an initial 3D waveguide structure into an analogous 2D structure, ...

Simulation of Electrochemical Etching of Silicon with COMSOL

A. Ivanov
Hochschule Furtwangen
Furtwangen, Germany

Electrochemical etching of silicon (anodization) is a process that can be used for etching of forms of nearly arbitrary shapes. The difficulty of applying the process for mass production is in the many parameters influencing the process, such as electrolyte concentration and temperature, silicon substrate doping and type, and so on. COMSOL as an FEM simulation tool is very suitable for ...

Design and Optimization of a High Performance Ultrasound Imaging Probe Through FEM and KLM Model

L. Spicci, and M. Cati
Esaote SpA
Florence, Italy

The present paper describes the development of a full FEM model for linear array high performance 5MHz ultrasound imaging transducer. As a preliminary design, a mono dimensional electro-acoustical KLM model was realized, then the complete FEM was developed and optimized. The optimized transducer was manufactured, so that agreement between transducer measured performances and simulation ...

Direct Pore-scale Modeling of Two-phase Flow Through Natural Media

I. Bogdanov, J. Kpahou, and A. Kamp
Open and Experimental Centre for Heavy Oil (CHLOE)
University of Pau
Pau, France

Direct numerical simulation of single- and two-phase flow in real pore systems is addressed in our paper. The X–ray computed micro-tomography technique has been applied first to reconstruct in details a real pore space of a subcentimetric sample. Making use of dedicated software (ScanIP) the generated porous medium images has been processed to build a 3D pore space geometry. Finally, based on ...