Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Modeling of Chloride Transport in Cracked Concrete: a 3-D Image–Based Microstructure Simulation

Y. Lu[1], E. Garboczi[1], D. Bentz[1]
[1]National Institute of Standards and Technology, Gaithersburg, MD, USA

The prediction of concrete materials service life is not easy, because the complex heterogeneous microstructure and the random nature of concrete materials. Study the presence of cracks in concrete and their effect on coupled reaction and transport are of great interest in civil engineering. Cracks with different widths and depths will reduce the cover thickness and accelerate the migration of ...

Modeling Internal Heating of Optoelectronic Devices Using COMSOL

N. Brunner[1][,][2]
[1]Voxtel, Inc, Beaverton, OR, USA
[2]University of Oregon, Eugene, OR, USA

In this paper the heat transfer module in COMSOL is utilized to simulate internal heating of an Avalanche Photodiode due to light-induced current through a resistivity that depends on charge carrier concentrations in the device. Initial tests are done by modeling the heating process on a previously-solved silicon p-n junction as a proof of concept before advancing to a more complicated geometry. ...

A COMSOL Model of Damage Evolution Due to High Energy Laser Irradiation of Partially Absorptive Materials

P. Joyce[1], J. Radice[1], A. Tresansky[1], J. Watkins[1]
[1]United States Naval Academy, Annapolis, MD, USA

In this paper we present a transient numerical model of the heat transfer and thermochemical damage evolution in an IR translucent material using COMSOL Multiphysics. The model is evaluated using literature supplied and experimentally determined material properties for carbon black laden PMMA (polymethyl-methacrylate). This variant of PMMA was chosen because it is homogeneous, isotropic, and the ...

Modeling of DC Discharges in Argon at Low Pressures

V. Gorokhovsky[1]
[1]Vapor Technologies, Inc., Longmont, CO, USA

The glow discharges in argon at pressures of 1 to 20 mTorr are modeling using COMSOL Plasma Module. DC glow discharge with secondary electron emission is compared to low pressure arc with thermionic emission. Boundary conditions on dielectric discharge tube walls are compared to that of metallic discharge tube walls. Modeling revealed that electron emission mechanisms as well as boundary ...

Orientation of Piezoelectric Crystals and Acoustic Wave Propagation

G. Zhang[1]
[1]Clemson University, Clemson, SC, USA

Surface acoustic wave (SAW) devices are commonly used as wireless filters, resonators, and sensors. The confinement of acoustic energy near the surface of a piezoelectric substrate in a SAW sensor makes it highly sensitive for discerning surface perturbation. As sensors, SAW devices have the potential to provide a high-performance sensing platform with capabilities of remote and high-temperature ...

Modeling and Prediction of Line Pattern Collapse

D. Bassett[1], M. Carcasi[1], W. Printz[1]
[1]Tokyo Electron America, Austin, TX, USA

In semiconductor manufacturing, effective cleaning of structures with liquid is one of the most important and potentially difficult process steps. It is important because it remains the cheapest and most cost-effective method to remove particles and residues from the structures in order to prevent defects, but can also be difficult because as the structures dry, surface tension forces can cause ...

Numerical Simulation of Phonon Dispersion Relations for Phononic Crystals

G. Zhu[1], E.M. Dede[1]
[1]Toyota Research Institute of North America, Ann Arbor, MI, USA

In previous work, a two-dimensional (2D) model was carried out to simulate the phononic band structure of a phononic crystal with square lattice structure, but this model did not account for the out-of-plane phonon dispersions [1]. In fact, for 2D films used for coating materials, it is more interesting to understand their cross-plane properties. In this work, the phonon dispersion relation of ...

Pulsed Eddy Current Probe Development to Detect Inner Layer Cracks Near Ferrous Fasteners Using COMSOL Modeling Software

V. Babbar[1], P. Whalen[1], T. Krause[1]
[1]Department of Physics, Royal Military College of Canada, Kingston, ON, Canada

Surface breaking cracks in conductive structures can be detected by conventional eddy current techniques. However, it is very difficult to detect inner layer defects in multilayered conductive structures either by conventional eddy current or ultrasonic methods. The transient/pulsed eddy current (PEC) technology can potentially overcome these limitations and is being developed for detection of ...

Modeling Proton Transport in Hydrophobic Polymeric Electrolytes

M. Andrews[1]
[1]Caribbean Industrial Research Institute, Calibration Laboratory, University of the West Indies, St. Augustine, Trinidad and Tobago

The Polymer Electrolyte Membrane fuel cell is one of the most promising green technologies for addressing portable, as well as transportation power needs. However, the science behind the fuel cell, in many regards, is still an enigma, and even more so, with the vast numbers of novel materials created annually; designed to offset issues related to durability, conductivity, cost- effectiveness and ...

Modeling Void Drainage with Thin Film Dynamics

J.J. Gangloff Jr.[1], W.R. Hwang[2], S.G. Advani[1]
[1]Center for Composite Materials, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
[2]School of Mechanical Engineering, Gyeongsang National University, Jinju, Gyeongsangnam-do, Korea

Voids in composite materials can lead to degraded structural performance. The following is a study of voids or bubbles in uncured viscous polymer resin during composites processing. The goal is to determine if voids can successfully migrate towards vacuum pathways, coalesce with the pathways, and escape. Inherent to the coalescence process is the drainage and rupture of the resin thin film ...