Veröffentlichungen und Präsentationen

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Optimisation of the Electrochemical Instrumentation of a Wear Simulator through Finite Element Modelling

Déforge, D.1, 2, Ponthiaux, P.2, Wenger, F.2, Lina, A.1, Ambard, A.1
1 Electricité de France (EDF) R&D, Chemistry and corrosion group, Les Renardières, Moret sur Loing cedex, France
2 Laboratory LGPM, Ecole Centrale Paris, Chatenay-Malabry cedex, France

Stainless steels are often used in nuclear power plants due to their good corrosion resistance. This good behaviour is due to an oxide film which forms on their surface and insulates them from the corrosive media. Sometimes, flow-induced vibrations can however lead to some contacts between the components, and thus to the degradation of this oxide film. The mechanical removal leads to an increase ...

A Non-isothermal Modeling of a Polymer Electrolyte Membrane Fuel Cell

H. Shin[1]

[1]Department of Mechanical Engineering, University of Michigan – Ann Arbor, Michigan, USA

Polymer electrolyte membrane (PEM) fuel cells have attracted attention as an alternative power source in various applications such as vehicles, portable supplies, and stationary power systems. A non-isothermal PEM fuel model is developed and simulated by using COMSOL Multiphysics. Although PEM fuel cells have been expected to be extensively used as an alternative power source, there have been ...

Steady-state simulation of mono-valent ion distributions within a nanofluidic channel

W. Booth[1], J. Schiffbauer[1], J. Fernandez[2], K. Kelley[3], A. Timperman[3], and B. Edwards[1]

[1]Physics Department, West Virginia University, Morgantown, WV, USA
[2]Chemical Engineering Department, West Virginia University, Morgantown, WV, USA
[3]Chemistry Department, West Virginia University, Morgantown, WV, USA

The steady-state non-equilibrium distributions of two species of mono-valent ions around a charged nanofluidic channel have been examined. Large reservoirs were placed on either side of the nanoscale channel to simulate bulk concentration of ions in a fluid. Results from COMSOL Multiphysics simulations show that the effect of the potential bias across the nanochannel yields a significant ...

Multiphysics Simulation of an Anode-supported Micro-tubular Solid Oxide Fuel Cell (SOFC)

G. Ganzer, W. Beckert, T. Pfeifer, and A. Michaelis
Fraunhofer IKTS
Dresden, Germany

The high thermal stability and fast start-up behavior make micro-tubular solid oxide fuel cells (SOFCs) a promising alternative for small-scale, mobile power devices in the range of some Watts. To understand the transport phenomena inside a single micro-tubular SOFC, a 2-D, axi-symmetric, non-isothermal model, performed in COMSOL Multiphysics® 4.2, has been developed. Due to long current path ...

Estimation of Localized O2 Starvation Using 3D Modelling for PEM Fuel Cells

Ramesh P[1], S.P Duttagupta[1]
[1]Indian Institute of Technology Bombay,Mumbai, Maharashtra, India

Air breathing proton exchange membrane fuel cells have now found its use in wide range of domestic and commercial energy based applications. Optimization of Proton Exchange Membrane Fuel Cell system parameters and its safer operation under dynamic conditions ensure higher system output and longer device lifetime. Ensuring safety against oxygen starvation reduces the degradation of membrane ...

Thermal Integration of Coupled SOFC System with a High-Performing Metal Hydride Storage

A. Mossadegh Pour[1], A. Dhira [1], R. Steinberger-Wilckensa[1]
[1]Department of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom

Auxiliary Power Units can play an important role in reducing vehicle emissions, especially in diesel and kerosene driven vehicles. In conventional vehicles the electricity supply comes from a generator that is directly coupled to the propulsion engine. New generation of fuel cell APUs exclusively use Solid Oxide Fuel Cells with some developments in high temperature polymer electrolyte membranes ...

Kinetic Investigation of a Mechanism for Generating Microstructures on Polycrystalline Substrates Using an Electroplating Process

T. Soares[1], H. Mozaffari[2], H. Reinecke[1]
[1]Universität Freiburg, Freiburg im Breisgau, BW, Germany
[2]Hochschule Furtwangen, Tuttlingen, BW, Germany

The purpose of this study is to understand the growth mechanism of copper (Cu) films on a Cu-Zn system substrate with a pre-defined pattern. The pattern was defined by conducting a selective etching process on a two-phase polycrystalline substrate. As a result of this process, there were etched regions correspondent to beta-phase crystals and quasi non-etched regions that belong to alpha-phase ...

Parametric Study of Electrolyte-Supported Planar Button Solid Oxide Fuel Cell

A. Aman[1], R. Gentile[1], Y. Xu[1], N. Orlovskaya[1]
[1]Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL, USA

Fuel cells are devices that convert chemical energy of a fuel into electrical energy through electrochemical processes. One of the types of fuel cell is the Solid Oxide Fuel Cell (SOFC) that uses solid ceramics for electrolytes. Numerical simulation involves constructing a mathematical model of the SOFC and use of specifically designed software programs that allows the user to manipulate the ...

Determining Degradation in Solid Oxide Fuel Cells Electrode Materials Using COMSOL Multiphyics® Software - new

G. Cui[1], Z. Chen[1], F. Tariq[1], V. Yufit[1], N. Brandon[1]
[1]Imperial College London, London, UK

Solid Oxide Fuel Cells (SOFCs) are one of the most attractive technologies for meeting our future energy demands. They promise the efficient conversion of chemical to electrical energy and are a growing area of both academic and industrial interests. Typical electrode-supported SOFCs consist of three key components, two porous functional electrode layers (anode and cathode) and one dense ...

A Comparative Study of the Basic Flow Field Designs for High Temperature Proton Exchange Membrane Fuel Cells - new

A. Lele[1], N. Lodha[1], R. Srivastava[1], A. Pandey[2], A. Paul[3]
[1]CSIR - National Chemical Laboratory, Pune, Maharashtra, India
[2]Reliance Industries Ltd., Reliance Technology Group, Navi Mumbai, Maharashtra, India
[3]CSIR - Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India

A Proton Exchange Membrane Fuel Cell (PEMFC) comprises a membrane-electrode assembly sandwiched between two conducting ‘monopolar’ plates having engraved gas flow channels, also called the flow field. The purpose of the flow field is to provide sufficient residence time for the gases to undergo reactions at the two electrodes, effect a homogeneous distribution of reactant gases over the given ...

Quick Search