Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Simulating the Influence of the Nozzle Diameter on the Shape of Micro Geometries Generated with Jet Electrochemical Machining

A. Schubert[1][2], M. Hackert[1], and G. Meichsner[2]

[1]Chair Micromanufacturing Technology, Faculty of Mechanical Engineering, Chemnitz University of Technology, Chemnitz, Germany
[2]Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

Jet Electrochemical Machining (Jet-ECM) is an unconventional procedure for micromachining. Based on localized anodic dissolution three-dimensional geometries and microstructured surfaces can be manufactured using Jet-ECM. COMSOL Multiphysics is used at Chemnitz UT to simulate the electric current density in the jet and the dissolution process. A mesh displacement dependent on the normal current ...

Finite Element Analysis of an Enzymatic Biofuel Cell: The Orientations of a chip inside a blood artery

C. Wang[1], Y. Parikh[1], Y. Song[1], and J. Yang[1]
[1]Mechanical & Materials Science Engineering, Florida International University, Miami, Florida, USA

Output performance of an implantable enzymatic biofuel cell (EBFC) with three- dimensional highly dense micro-electrode arrays has been simulated with a finite element analysis approach. The purpose of this research is to optimize the orientation of this EBFC chip inside a blood artery such that the mass transport of glucose around all the micro-electrodes can be improved and hence output ...

Numerical Modelling of Electrophoresis Applied to Restoration of Archaeological Organic Materials

J. Caire[1], A. Bouh[1], and E. Guilminot[2]
[1]LEPMI, UMR 5631, INPG - CNRS, Saint Martin d’Hères, France
[2]EPCC, Arc'Antique, Nantes, France

Restoration of archaeological materials from oceans is a major activity of Arc’ Antique. Organic materials such as wood, tissues, leathers, papers and ceramics found in sea water are always impregnated with salts. Rinsing such archaeological objects with pure water to extract the salts takes too long, so electrophoresis was used to improve the salt extraction. The objective of this ...

Advanced 3D Imaging Coupled to Modeling of Fuel Cell and Battery Electrodes

F. Tariq[1], V. Yufit[1], M. Marinescu[1], G. Cui[1], M. Kishimoto[1], N. Brandon[1]
[1]Imperial College London, London, United Kingdom

Solid Oxide Fuel Cells (SOFC) and Li-ion batteries (LIB) are electrochemical devices where performance is dependent on reactions inside porous electrode microstructures. Here we use tomographic techniques to probe 3D electrode structures (anodes and cathodes) at micro-nanometer length scales. Subsequently, micro/nano structural changes in electrodes are characterized and quantified. Utilizing ...

Numerical Modeling of Pit Growth in Microstructure

S. Qidwai[1], N. Kota[2], V. DeGiorgi[1]
[1]Naval Research Laboratory, Washington, DC, USA
[2]Science Applications International Corporation, Washington, DC, USA

Pitting corrosion is a complex phenomenon where rates of: i) chemical reactions, ii) diffusion of various species involve in those reactions, and iii) species dissolution at the metal-electrolyte interface are fully dependent on each other, except under special conditions or assumptions. One set of such conditions is that: a) there are no species concentration gradients due to the rapid mixing ...

A Comparative Study of the Basic Flow Field Designs for High Temperature Proton Exchange Membrane Fuel Cells - new

A. Lele[1], N. Lodha[1], R. Srivastava[1], A. Pandey[2], A. Paul[3]
[1]CSIR - National Chemical Laboratory, Pune, Maharashtra, India
[2]Reliance Industries Ltd., Reliance Technology Group, Navi Mumbai, Maharashtra, India
[3]CSIR - Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India

A Proton Exchange Membrane Fuel Cell (PEMFC) comprises a membrane-electrode assembly sandwiched between two conducting ‘monopolar’ plates having engraved gas flow channels, also called the flow field. The purpose of the flow field is to provide sufficient residence time for the gases to undergo reactions at the two electrodes, effect a homogeneous distribution of reactant gases over the given ...

A Fully Coupled Three-Dimensional Dynamic Model of Polymeric Membranes for Fuel Cells

P. Alotto[1], M. Guarnieri[1], and F. Moro[1]

[1]Dipartimento di Ingegneria Elettrica, Università di Padova, Padova, Italy

The proton exchange membrane is a key component in the currently widely studied Proton Exchange Membrane Fuel Cells. In this paper a fully coupled three-dimensional dynamic numerical model of the membrane including all the physically relevant phenomena, i.e. ion transport, hydration-dependent conductivity and thermal effects is presented. The highly non-linear model is discretized by means of ...

Determining Degradation in Solid Oxide Fuel Cells Electrode Materials Using COMSOL Multiphyics® Software - new

G. Cui[1], Z. Chen[1], F. Tariq[1], V. Yufit[1], N. Brandon[1]
[1]Imperial College London, London, UK

Solid Oxide Fuel Cells (SOFCs) are one of the most attractive technologies for meeting our future energy demands. They promise the efficient conversion of chemical to electrical energy and are a growing area of both academic and industrial interests. Typical electrode-supported SOFCs consist of three key components, two porous functional electrode layers (anode and cathode) and one dense ...

Constructing COMSOL Models of a Bacteriological Fuel Cell

R. Coker[1], J. Mansell[1]
[1]NASA - Marshall Space Flight Center, Huntsville, AL, USA

We have started constructing preliminary design COMSOL models of a bacteriologically driven \'fuel cell\' that is intended to process waste products, such as carbon dioxide and brine, from a crewed vehicle. At this early stage, this complex system is reduced to two electrodes separated by a membrane. The electrolyte is a brine appropriate for growing methanogenic bateria, though none are ...

Sensitivity Analysis for High Temperature Proton Exchange Membrane Fuel Cell - new

A. Lele[1], N. Lodha[1], R. Srivastava[1], U. Bipinlal[1], A. Pandey[2], A. Paul[3]
[1]CSIR - National Chemical Laboratory, Pune, Maharashtra, India
[2]Reliance Industries Ltd., Reliance Technology Group, Navi Mumbai, Maharashtra, India
[3]CSIR - Central Electrochemical Research Institute, Chennai, Tamil Nadu, India

A Proton Exchange Membrane Fuel Cell (PEMFC) is an electrochemical device, which converts a part of heat from the formation of water into electricity. Each cell has a Membrane-Electrode Assembly (MEA) which is placed between two electrically conducting plates having gas flow channels. An MEA is made of a solid proton-conducting electrolyte sandwiched between two electrodes (anode and cathode). ...