Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Multiphysics Modeling of a Minimally Invasive Tissue Ablation Methodology

J. S. Crompton [1], J. Thomas [1], K. Koppenhoefer [1],
[1] AltaSim Technologies, Columbus, OH, USA

Necrosis of human tissue can typically be obtained by exposure to temperatures below 40°C or above +50°C. However, inherent variability in tissue properties, the complexity of tissue response and dissipation of thermal energy by local perfusion or blood flow can make the development of routine, predictable in-vivo approaches to produce necrosis difficult. Although a number of thermal ablation ...

Temperature Excursions at the Pulp-Dentin Junction during the Curing of Light-Activated Dental Restorations

M. Jakubinek[1,2], C. Neill[1], C. Felix[3], R. Price[2,3], M. White[1,2]

[1]Departments of Chemistry and Physics, Dalhousie University, Halifax, NS, Canada
[2]Institute for Research in Materials, Dalhousie University, Halifax, NS, Canada
[3]Department of Dental Clinical Sciences, Dalhousie University, Halifax, NS, Canada

Heat produced during the curing of light-activated dental restorations could damage the dental pulp. Given the prevalence of composite restorations and the importance of avoiding injury to the pulp, efforts should be made to minimize the temperature increase that occurs at the pulp-dentin junction during light-curing. In this investigation we develop and evaluate a COMSOL Multiphysics FEM tooth ...

Image Based Mesh Generation for Realistic Simulation of the Transcranial Current Stimulation

R. Said[1], R. Cotton[1], P. Young[1], A. Datta[2] , M. Elwassif[2], and M. Bikson[2]
[1]Simpleware Ltd, Exeter, UK
[2]Department of Biomedical Eng, The City College of New York, USA

Electrical stimulation of the brain involves the application of currents delivered through scalp electrodes to modulate brain activity, known as Transcranial Current Stimulation (TCS). A critical factor for TCS efficacy and safety is the “spatial focality” of induced neuronal modulation. Bikson and coauthors from the City College of New York have been investigating the impact of disc ...

Modelling of Thermally Induced Electrical Instabilities in Intestine using COMSOL Multiphysics®

A. Gizzi[1][3], C. Cherubini[1][2], S. Migliori[1][3], and S. Filippi[1][2]
[1]Nonlinear Physics and Mathematical Modeling Lab, Engineering Faculty, University Campus Bio-Medico, Roma, Italy
[2]International Center for Relativistic Astrophysics, University of Rome La Sapienza, Roma, Italy
[3]Alberto Sordi Foundation, Research Institute on Aging, Roma, Italy

Postoperative or paralytic Ileus (PI) is a temporary aftermath of major abdominal surgeries. PI prevents the passage of food throughout the lumen leading to bloating, distension, emesis and pain. A plausible mathematical model for this phenomenology physiologically fine tuned including thermal variations, is presented here. Using COMSOL Multiphysics the existing intestinal ionic model have been ...

Simulation of Deformed Solid Particles in Constrained Microfluidic Channel

M. Cartas-Ayala[1], R. Karnik[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Characterization of particles has numerous applications in science and diagnostics. Recently, particle passage through constrained microchannels has been proposed to characterize particles based on their passage velocity. Nevertheless, there is no clear understanding of how the physics in this system interact. Here we quantify the effects of the flow around the particle by simulating the passage ...

An Examination of Wall Shear Stresses in Curved Arterial Vessels Using Bioresorbable Stents

D. W. Pepper [1], S. Pirbastami [1],
[1] University of Nevada - Las Vegas, Las Vegas, NV, USA

Bioresorbable stents are providing temporary mechanical support to keep a narrowed or blocked coronary artery open and restore the blood flow and will be gradually degraded and resorbed after the healing and remodeling of arterial wall. This new generation of stents has lower rates of restenosis and in-stent thrombosis in comparison with permanently bare-metal stents. Since this new generation ...

A Simplified Numerical Model for Simulating Sliding Door and Surgical Staff Movement in an Operating Theater

C. Balocco[1]
[1]Dipartimento di Energetica, Università di Firenze, Firenze, Italy

This paper deals with a numerical investigation on sliding door and people moving effects on the indoor climate of a standard ISO5 class OT with an ultraclean air filter system and a total ceiling unidirectional diffuser. A simple method to analyze the effects on the OT climate by different sliding door conditions combined with crossing persons and persons with a stretcher crossing is provided. ...

Deformable Image Registration for Pleural Photodynamic Therapy

B. Liu[1], T. C. Zhu[1]
[1]Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Deformable image registration is a form of medical image processing that can provide insights into the development of phenomenon and variation in normal anatomical structure over time. Prior to post-operative pleural photodynamic therapy (PDT), a series of CT scans of lungs will be acquired. During PDT treatment, an infrared navigation system is used to contour the lungs and provide real-time ...

Magnetostatic-Magnon Sensors for Microwave Microscopy of Biological Structures - new

E. Hollander[1], E. O. Kamenetskii[1], R. Shavit[1]
[1]Microwave Magnetic Laboratory, Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer Sheva, Israel

Microwave sensing and monitoring is very attractive for biological applications because of their sensitivity to water and dielectric contrast. Direct detection of biological structures in microwave frequencies and understanding of the molecular mechanisms of microwave effects is considered as a problem of a great importance. Nowadays, however, microwave technique for localized testing biological ...

Numerical Validation of the Efficiency of Dual-Frequency Radiofrequency Ablation

A. Candeo[1] and F. Dughiero[1]
[1]Department Electrical Engineering, University of Padova, Padova, Italy

Radiofrequency Ablation (RFA) represents a valid alternative for treating liver metastases in medically complicated patients. Conventional devices currently operate at 500 kHz, due to good conducting properties of tissues. However, the use of lower frequencies (i.e. 20 kHz) has been recently reported to enhance the treatment effectiveness, due to a more pronounced difference in electrical ...