Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Numerical Modelling of Vortex Induced Vibrations  in Submarine Pipelines

F. Van den Abeele, J. Vande Voorde, and P. Goes
ArcelorMittal Research & Development Industry Gent, Zelzate, Belgium

Vortex-induced vibration is a major cause of fatigue failure in submarine oil and gas pipelines and steel catenary risers. Even moderate currents can induce vortex shedding. In this paper, COMSOL Multiphysics is applied to study the flow pattern around submarine pipeline spans, and predict the amplitude and frequency of the vortex induced vibrations. The sensitivity of the computational fluid ...

Acoustic and Flow Analysis to Reduce Boiler Hum - new

Th. B. J. Campmans[1],
[1]LBPSIGHT, Nieuwegein, The Netherlands

A installation caused severe hum, with 30 Hz as dominant frequency, causing serious annoyance. The acoustic study showed resonances around 30 Hz. Poor flow conditions existed at the inlet and outlet of the forced draft fan. Flow patterns were studied using CFD. Both the inlet and outlet contained large vortices, causing the strong hum. Changes in the design were studied. The finally changes ...

Numerical Modeling of Sampling Airborne Radioactive Particles Methods from the Stacks of Nuclear Facilities in Compliance with ISO 2889 - new

P. Geraldini[1]
[1]Sogin Spa, Rome, Italy

The main objective of this study is to verify the compliance of an ongoing nuclear facilities stack design with the ISO 2889 requirements, during normal and off-normal conditions. In particular, with the numerical simulations, they have been identify well-mixed sample locations along the chimney and the compliance with the International Standard requirements as result of stack flow rate and ...

Hydrophone Acoustic Receiver Modeling: Turbulent Flow Modeling and Acoustic Analysis - new

D. Groulx[1], A. Bharath[1], S. Campbell[1]
[1]Department of Mechanical Engineering, Dalhousie University, Halifax, NS, Canada

The field of underwater acoustics research is constantly growing with the ongoing improvement of acoustic measuring techniques. An acoustic hydrophone receiver is a passive listening device which is widely used in biological research and sonar technology. The hydrophone however suffers from turbulence generated noise created by its presence in ever faster flow. This work aims to analyze the ...

CFD Analysis of a Heat Exchanger for an Electric Machine

A. Curci [1], D. Falchi [2], G. Secondo [1],
[1] ABB S.p.A. Italy
[2] Università degli studi di Pavia, Italy

In recent years the thermal behavior of electric machines is an attractive research topic. Due to the complexity of the problem, several approaches that exploit FEM analysis have been developed and presented in literature. In this research a 3D thermo-fluid dynamic simulation of an electric machine equipped with rubber belts directly applied on its shaft has been performed through COMSOL ...

平板膜浓差极化过程的有限元仿真分析

徐佩锋 [1][2], 杨宁 [1],
[1] 江苏大学,镇江,江苏,中国
[2] 江苏农林职业技术学院,句容,江苏,中国

在 COMSOL Multiphysics® 中建立了平板膜组件模型,利用自由—多孔介质流和稀物质传递接口,通过对硅颗粒粒径和料液流速等操作参数及相互约束关系的设置,考察对渗透通量、膜表面处浓度等的影响,对硅颗粒悬浮液平板膜过滤中的浓差极化过程和膜组件的工作性能进行全面的仿真分析。并利用 COMSOL 中的函数、参数化扫描等后处理方式,实现了对仿真结果的可视化输出。仿真结果与实验数据较为一致,仿真模型可以作为真实设备的有效补充。

Investigation of Mean-Flow Effects on Tubular Combustion Chamber Thermoacoustics Using a Burner Transfer Matrix Approach - new

A. Andreini[1], B. Facchini[1], A. Innocenti[1], D. Pampaloni[1]
[1]University of Florence, Florence, Italy

The paper presents a methodology to account for local mean-flow effects on thermo-acoustic instabilities to improve typical calculations performed under the zero-Mach number assumption. A 3D FEM model of a simplified combustor is solved with COMSOL Multiphysics® Pressure Acoustics interface. The Helmholtz equation is used to model the combustor and the classical k-τ model for the Flame Transfer ...

Development of COMSOL-Based Applications for Heavy Oil Reservoir Modeling

S. Cambon [1], I. Bogdanov [1]
[1]Open & Experimental Center for Heavy Oil (CHLOE), University of Pau, Pau, France

The efficiency and environmental impact of oil production become a principal challenge of energy producing companies. The improvement of existing and development of novel methods are often feasible within either a “new” physical framework (from the viewpoint of oil reservoir applications) or a non-trivial combination of “known” phenomena. Last fifty years the dedicated reservoir simulators have ...

Simulation of Interstitial Nanoparticle Flow for Development of Tumor-On-A-Chip Device

J. Park [1], M. P. Vidal-Meza [1], R. Zhou [1], S. Barua [1], C. Wang [1],
[1] Missouri University of Science & Technology, Rolla, MO, USA

A simulation was performed to investigate the flow behaviors of drug delivery nanoparticles in a tumor-on-a-chip microfluidic device, which mimics a tumor cell having endothelial cells with micro-sized gaps. The Navier-Stokes equation and the convection-diffusion equation were used to model the flow field and the time-dependent particle distribution in the device, respectively. We investigated ...

Simplified CFD Modeling of Air Pollution Reduction by Means of Greenery in Urban Canyons

S. Lazzari [1], K. Perini [1], E. R. di Schio [2], E. Roccotiello [3],
[1] University of Genova, Dept. of Sciences for Architecture, Genova, Italy
[2] University of Bologna, Dept. of Industrial Engineering, Bologna, Italy
[3] University of Genova, Dept. of Sciences of Earth, Environment and Life, Genova, Italy

As known, air quality in urban areas is dramatically affected in particular by the noteworthy presence of respirable suspended particulate matter (such as PM2.5), nitrogen oxides (NOx), carbon monoxide (CO) and hydrocarbons (HC), which are mainly due to traffic-induced emissions. On the other hand, it is also known that vegetation can help restoring the environmental quality of dense urban areas ...