Veröffentlichungen und Präsentationen

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Thermal Study of Valve Regulated Lead Acid Batteries and Electronics Chamber Used in Stand-Alone Street Lighting Applications - new

D. Groulx[1], J. Skaalum[1], T. Jamieson[1]
[1]Mechanical Engineering, Dalhousie University, Halifax, NS, Canada

This paper presents a study on the heat generation of Valve-Regulated Lead Acid (VRLA) batteries used in off-grid streetlighting applications from PoleCo, a Halifax based company. One goal of the project was to produce validated COMSOL® models of the enclosure that holds these VRLA batteries. This model can then be used to investigate methods of reducing the temperature of the batteries based on ...

Simulation of Gravity-Driven Flow Through a Microfluidic Device on a Rocker Platform - new

B. Srinivasan[1], J. Hickman[1], M. Shuler[2]
[1]University of Central Florida, Orlando, FL, USA
[2]Cornell University, Ithaca, NY, USA

A micropump delivers fluid between different components of a microfluidic device in a controlled manner. The elimination of micropump can reduce the design complexity, simplify fabrication, shrink the device footprint and decrease the set-up time required for the operation of the microfluidic device. One such pumpless microfluidic device for body-on-a-chip application for drug toxicity studies ...

Accuracy Tests for COMSOL - and Delaunay Meshes

E. Holzbecher, and Hang Si
Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Berlin, Germany

In the paper we examine the accuracy of various meshes for different model regions and simple differential equations in 2D and in 3D. We study the potential equation for a single irregular domain (2D testcase 1), for a simple domain with irregular sub-domains (2D testcase 2) and a 3D testcase. For testcase 1 we compare with the analytical solution, for testcases 2 with the best solution, obtained ...

Modeling of HTPEM Fuel Cell Start-Up Process by Using COMSOL Multiphysics

Y. Wang[1], D. Uwe Sauer[1]
[1]Electrochemical Energy Conversion and Storage Systems, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, Aachen, Germany

HTPEM fuel cells are considered to be the next generation fuel cells. The electrochemical kinetics for electrode reactions are enhanced by using PBI membrane at an operation temperature between 160-180 °C comparing to LTPEM fuel cells. But starting HTPEM fuel cells from room temperature to an operation temperature is a challenge. In this work, using preheated air to heat up the fuel cells ...

Numerical Simulation of Forced and Static Smoldering Combustion

S. Singer[1], W. H. Green[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Transient, two-dimensional (axisymmetric) simulations of a cigarette subject to realistic static and forward smoldering cycles were performed. The computational domain consists of a porous packed bed of tobacco and a filter surrounded by a thin, porous paper and a region of surrounding air. The governing equations include overall mass conservation, momentum conservation, conservation equations ...

The Microgeometry of Pressure Seals - new

R. P. Ruby[1], G. Kulkarni[2], U. Kanade[1]
[1]Noumenon Multiphysics Pvt. Ltd., Pune, Maharashtra, India
[2]Oneirix Engineering Laboratories Pvt. Ltd., Pune, Maharashtra, India

Seals or gaskets that are compressed between walls of a container are important to many industrial applications. Understanding the performance of such seals requires an understanding of the microscopic geometry of the sealing surfaces, because the fluid seeps around the undulations of such surfaces. This paper presents strong computational evidence that the microgeometry of such surfaces depends ...

Computational Study on Transition of Oil-Water Flow Morphology due to Sudden Contraction in Microfluidic Channel - new

J. Chaudhuri[1], S. Timung[1], T. K. Mandal[1], D. Bandyopadhyay[1]
[1]Indian Institute of Technology Guwahati, Guwahati, Assam, India

The flow morphology of two immiscible fluids in a microfluidic device finds numerous applications such as emulsification, synthesis of nanomaterials [1], lab-on-a-chip devices and biological analysis [2]. It offers many advantages over the conventional macroscopic devices because of its availability for higher surface to volume ratio, ability to handle small volume of fluids, easier process ...

Depth-Averaged Modeling of Groundwater Flow and Transport

P. Kitanidis
Civil and Environmental Engineering, Stanford University, Stanford, CA, USA

In many groundwater studies, the areal extent of an aquifer is much larger than its thickness so that flow and transport take place primarily in horizontal directions. Thus, the most common type of modeling in practical applications is two-dimensional involving vertically averaged dependent variables, primarily hydraulic head and solute concentration. This is a tutorial on depth-averaged ...

Investigation of Blade Profiles of Vertical Axis Wind Turbine by Numerical Simulation

S. Yoshioka[1]
[1]Ritsumeikan University, Kusatsu City, Shiga, Japan

There are two types of vertical axis wind turbine, drag-type and lift-type. Drag type wind turbine can rotate in low speed wind condition, although its rotation speed is low. Lift type wind turbine can rotate at higher speed, although it works only in high speed wind condition. This study investigates new blade profile that realize rotation in low wind speed condition and higher rotation speed by ...

Numerical Investigation of Swirl Flow in Curved Tube with Various Curvature Ratio

A. Kadyirov[1]
[1]Research Center for Power Engineering Problems of the Russian Academy of Sciences, Kazan, Russia

The influences of curvature effects and swirl intensities for Non-Newtonian viscous fluid flow in a curved tube have been numerically investigated by using COMSOL Multiphysics®. The twisted tape, which are located directly in front of the curved part, are used as swirl flow generators. The tape is twisted until it reaches an angle of 90 degrees and turns right. Swirling flow, getting into the ...

Quick Search