Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Effect of Parallel Strip Water Source Spacing on Lateral Infiltration Flux

M. García-Serrana [1], J. L. Nieber [1], J. S. Gulliver [1],
[1] University of Minnesota, Minneapolis, MN, USA

This analysis evaluates the importance of the lateral component of flow on the infiltration of water from parallel strip sources of water on the soil surface. Flow from such sources will be two-dimensional, having both vertical and lateral components. Here we examine the effect of the spacing between parallel strip sources and the texture of the soil on the rate of infiltration through a given ...

Oscillatory Thermal Response Test (OTRT) – An Advanced Method for Gaining Thermal Properties of the Subsurface

P. Oberdorfer[1]
[1]Georg-August-Universität Göttingen, Göttingen, Germany

Thermal Response Tests (TRTs) are the state-of-the-art method to obtain the thermal conductivity of the subsurface in the nearby ambience of a borehole heat exchanger (BHE). The results of TRTs are used to determine the necessary depth of the borehole and to make long time predictions about the potential of heat extraction. For a TRT, a constant heat load is injected into the subsurface and the ...

Can we use Aquifers to Monitor Magma Chambers? Using COMSOL Multiphysics® to Investigate Subsurface Strain Changes and Their Effect on Hydrological Systems - new

K. Strehlow[1], J. Gottsmann[1], A. Rust[1]
[1]University of Bristol, Bristol, UK

Groundwater-bearing geological layers respond to and modify the surface expressions of magmatic activity, and they can also become agents of volcanic unrest themselves. Interpretations of unrest signals as groundwater responses to changes in the magmatic system can be found for many volcanoes and include a wide range of phenomena and suggested processes to explain them (e.g., Newhall et al., ...

Towards a Quantitative Prediction of Ice Forming at the Surface of Airport Runways

J. D. Wheeler [1], P. Namy [1], M. Rosa [1], L. Capobianco [1],
[1] SIMTEC, Grenoble, France

Anticipation of meteorological events such as ice forming is a key challenge to optimise the use of antifreeze on airport runways. To obtain a predictive numerical tool of ice forming on the runways, Groupe ADP and SIMTEC developed a COMSOL Multiphysics® model, in which several physical phenomena contributing to the temperature variations of the runway are involved. Radiative exchanges occur ...

Geomagnetic Modeling with COMSOL Multiphysics® Software - new

G. Ha[1], S. S. Kim[1], J. H. Kim[1]
[1]Chungnam National University, Daejeon, Korea

Here we aim to advance geomagnetic modeling approaches using COMSOL Multiphysics® software and improve the degree of detail that can be obtained from the measured magnetic field. First, we carried out benchmark tests by comparing the computed results using the widely used analytic solutions for rectangular bodies with arbitrary direction of magnetization with those from the AC/DC Module of ...

Underground Coal Fire Extinction Model Using Coupled Reactive Heat and Mass Transfer Model in Porous Media

S. Suhendra[1], M. Schmidt[1], and U. Krause[1]
[1]Laboratory II.2: “Flammable Bulk Materials and Dusts, Solid Fuels”, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany

Green house gases emission associated with natural hazard of underground coal seam fire has been recognized as a worldwide problem leading to global warming threat. Therefore, in this paper a model to study underground coal fire is presented and the results will be devoted to strategic development of coal fire extinction technology within the framework of Sino-German Coal Fire Research ...

Coupled Hydro-Mechanical Analysis of Excavation Damaged Zones around an Underground Opening in Sedimentary Rock

H. Abdi[1], E. Evgin[1], M. Fall[1], T.S. Nguyen[2], and G. Su[2]
[1]University of Ottawa, Ottawa, ON, Canada
[2]Canadian Nuclear Safety Commission, Ottawa, ON, Canada

A large amount of research work has been carried out in many countries to determine the viability of radioactive waste disposal in deep geological repositories. It is well known that excavation can cause damage around underground openings. On the other hand, the mechanical damage can influence the stability of the opening and the flow characteristics of the rock mass. In addition, all physical ...

Coupling COMSOL’s Subsurface Flow Module with Environmental Geochemistry in PHREEQC

L. Wissmeier[1], and D. A.Barry[2]
[1]GIT HydroS Consult GmbH, Freiburg, Germany
[2]EPFL, Lausanne, Switzerland

We present a software tool for simulations of subsurface flow and solute transport in combination with comprehensive intra-phase and inter-phase geochemistry. The software uses PHREEQC as a reaction engine to COMSOL Multiphysics®. The coupling with PHREEQC gives major advantages over COMSOL’s built-in reaction capabilities, i.e., the soil solution is speciated from its element composition ...

Assessment of Spatial Variably Saturated Flow by Irrigation Moisture Sensors in 2-Dimensions using the COMSOL Multiphysics 4.1

A. Boluwade, and C. A. Madramootoo
Bioresources Engineering, McGill University
Ste. Anne De Bellevue, QC
Canada

This paper reports on the application of COMSOL Multiphysics’ Richard\'s Equation Interface in the assessment of irrigation moisture sensors for detecting the level of water saturation in a spatial variably saturated soil. The Richard\'s Equation (in COMSOL) provides the interface which automates the van Genuchten equation. A hypothetical soil column 4m by 4m was set up with seven irrigation ...

Designing Materials for Mechanical Invisibility Cloaks

P. Olsson[1], F. Larsson[1], A. Khlopotin[1], S. Razanica[1]
[1]Chalmers University of Technology, Gothenburg, Sweden

In solid mechanics, there is considerable interest in achieving “invisibility”. The applications in mechanics include protection of structures and parts of structures from potentially harmful transient waves and steady state vibrations. A suggested large scale application is that protection against seismic waves from earthquakes could be achieved by using cloaking to re-route the waves around ...