Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Thermo Mechanical Analysis of Divertor Test Mock-up using COMSOL Multiphysics

Y. Patil[1], D. Krishnan[1], S. S. Khirwadkar[1]
[1]Institute for plasma research, Bhat, Gandhinagar, Gujarat, India

Divertor is act as an exhaust for the nuclear fusion reactor. Main function of a divertor is to remove the heat flux from the plasma. Plasma facing components of the divertor are made up of Carbon (Graphite/CFC) and tungsten like materials[1]. Hence these materials are exposed to the transient heat loads up to 10MW/m^2. Thermo mechanical behavior of Graphite test mock-up under the transient heat ...

Modeling Convection during Melting of a Phase Change Material

D. Groulx, and R. Murray
Mechanical Engineering
Dalhousie University
Halifax, NS

COMSOL Multiphysics can be used to model a latent heat energy storage system. A 2D numerical study was performed to simulate melting of a PCM including both conduction and convective heat transfer. The heat transfer in fluids and laminar flow physics interfaces were used. To model natural convection, proper volume force was applied to the PCM. The viscosity was input as a piecewise, continuous ...

Modeling Residual Stresses in Arc Welding

F. Roger[1], and A. Traidia[2]
[1]ENSTA Paristech, Paris, France
[2]AREVA NP, Saint Marcel, France

The prediction of mechanical response of assemblies during arc welding necessitates the knowledge of thermal history of the components and the constitutive behavior of the materials. COMSOL can simulate thermal and structural interaction but it needs to evaluate the time evolution of internal variables like viscoplastic strain and hardening parameters. In the present paper we extend the ...

A Practical Method to Model Complex Three-Dimensional Geometries with Non-Uniform Material Properties Using Image-based Design and COMSOL Multiphysics®

J. Cepeda[1], S. Birla[2], J. Subbiah[2], H. Thippareddi[1]
[1]Department of Food Science & Technology, University of Nebraska, Lincoln, NE, USA
[2]Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA

Geometries with heterogeneous material properties are typically defined as a set of multiple parts, each part representing a different material. However, assembling or defining the individual parts of complex geometries can be difficult. A practical method based on image-based mesh generation, a custom algorithm for labeling materials, and interpolation functions of COMSOL Multiphysics® can be ...

Multiphysics CAE Simulations of Casting Process for First-time-right Product Development

M. Hussain [1], Ramanathan S. [1], R. C. Thiagarajan [1],
[1] ATOA Scientific Technologies, Bengaluru, Karnataka, India

Casting product performance depends on material, flow, Process Temperature, Solidification, Shrinkage and residual stress. In a casting process, not all available resources are utilized effectively which results in low quality of casting, defects and metal wastage. Physics based modeling is increasingly used to optimize product performance, improve quality and reduce defects of casting products. ...

Implementation of a Viscoelastic Material Model to Simulate Relaxation in Glass Transition - new

Z. Zheng[1], R. Zhang[1]
[1]Corning Incorporated, Corning, NY, USA

Introduction: Glass relaxation occurs in a range of temperature during transition from equilibrium to super-cooled liquid. Viscoelastic material model can be applied to simulate glass behavior during the glass transition regime and to predict the glass deformation and stress evolution. Viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when ...

Analysis of Burning Candle

J.S. Crompton, L.T. Gritter, S.Y. Yushanov, and K.C. Koppenhoefer
AltaSim Technologies LLC, Columbus, OH, USA

Analysis of burning candles is extremely complex; combustion produces a highly non-linear temperature profile through the flame in which local temperatures may exceed 1400 °C. Heat transfer includes radiation, conduction and convection components and the low melting point of the candle wax leads to a phase change that allows mass transport via capillary flow prior to combustion in the flame. ...

Simulation of the Temperature Profile During Welding with COMSOL Multiphysics® Software Using Rosenthal's Approach - new

A. Lecoanet[1], D. G. Ivey[1], H. Henein[1]
[1]Department of Chemical & Materials Engineering, University of Alberta, Edmonton, AB, Canada

A 3D finite element analysis is carried out, using COMSOL® software, to reproduce the thermal profile obtained with Rosenthal’s equation. The implemented heat transfer equation has been modified as a means to approximate Rosenthal’s solution. An analysis of the differences between the simulation and Rosenthal’s solution, when the geometry of the domain and the source are changed, has been ...

Numerical Simulation of Si Nanosecond Laser Annealing by COMSOL Multiphysics

M. Darif, and N. Semmar
GREMI-UMR6606, CNRS-Universite d’Orleans, Orléans, France

A 2D transient heat conduction model was created in COMSOL Multiphysics to simulate temperature changes in material irradiated by a KrF laser beam confined on silicon’s surface. In this paper, the obtained results are shown and discussed in case of bulk Silicon. The heat source is distributed in time with ‘gate’ and ‘gaussian’ shapes. The thermal properties values ...

Simulation of Cascaded Thermoelectric Devices for Cryogenic Medical Treatment - new

P. Aliabadi[1], S. Mahmoud[1], R. K. AL-Dadah[1]
[1]Mechanical Engineering Department, University of Birmingham, Birmingham, UK

This study is focused on using a thermoelectric device (TED) as an alternative to the cryogenic liquid for cooling cryosurgical probe used for cancerous tissue ablation. Thermoelectric device, namely Peltier, is a solid state device which converts electric current to thermal gradient. In past years thermoelectric devices have been successfully utilized in refrigeration and air conditioning ...

1 - 10 of 552 First | < Previous | Next > | Last