Veröffentlichungen und Präsentationen

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Analysis of Heat Transfer and Phase Change in Laser-Assisted Direct Imprinting Processes

F. K. Chung, Y. L. Wang, C. H. Chen
Department of Mold and Die Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung , Taiwan

In this study, a model cast in COMSOL Multiphysics has been developed for the analysis of heat transfer and phase change during laser-assisted direct imprinting processes. The features of this model include the employment of temperature-dependent thermal properties, the use of equivalent specific heat for the treatment of latent heat of fusion, automatically switching the thermal contact ...

Multiphysics Modeling of Radio-Frequency Cooking

M. Rayner
Department of Food Technology, Engineering and Nutrition, Faculty of Engineering, Lund University, Lund, Sweden

A radio frequency-based cooking process for a meat product was modeled using the Heat Transfer Module. Included wasa term for internal heat generation as generated by Joule heating caused by an applied electric field. The dielectric and thermal properties were implemented as a function of temperature. The resulting simulation showed good agreement with experimental end point temperature data from ...

Temperature Distribution Study of Composite Germanium Detector

M. Wolf1, J. Kojouharova2, I. Kojouharov2, T. Engert2, J. Gerl2, J. Groß1, and H.-J. Wollersheim2
1Hochschule Darmstadt, University of Applied Sciences, Darmstadt, Germany
2Gesellschaft für Schwerionenforschung GmbH, Darmstadt, Germany

Temperature distributions of cooled Germanium (Ge) detectors are calculated by the COMSOL Multiphysics software in order to determine the necessary cooling power of an electromechanical cooling engine. For a single Ge-crystal, heat losses of 2.5 W are determined, which increase to 5.7 W for a composite detector with three Ge-crystals.The energy transfer may be reduced substantially by a heat ...

A Numerical Approach to the Heat Transfer Studies inside the Human Eye

E. H. Ooi, and E. Ng Yin Kwee
School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore

In this presentation, abnormalities in the human eye are studied. The outline for the presentation is:Background of the ResearchModel DevelopmentSteady state solution of a normal eyeEffects of aqueous humor hydrodynamics on the temperature distribution inside the human eyeSummary

Laser Welding of a Titanium Feed Through

H. Viatge
SORIN Group, France

In all implantable medical devices, one main challenge is to assure no water penetrates in the electronic part of the system. To be able to transmit the electronic information from the inside of the device to the lead without any water infiltration, we used a complex part called feed through. This piece is made of four different materials: titanium, alumina, gold and platinum. It is ...

Active Infrared Technique for Landmine Detection: Numerical and Experimental Results

P. Fallavollita[1,2], S. Esposito[1,2], and M. Balsi[1,2]
[1]Dipartimento di Ingegneria dell’Informazione, Elettronica e Telecomunicazioni, “La Sapienza” University, Rome, Italy
[2]Humanitarian Demining Laboratory, Cisterna di Latina, Italy

Landmines are an open problem in many countries of the world. They cause injuriesand death and no technique proposed to date guarantees fast and 100% reliable detection alone. To this purpose, at the Humanitarian Demining Laboratory of “La Sapienza” University of Rome, several solutions are being studied. In this paper, numerical simulations of a prototype thermal detection system are ...

An Integrated Numerical-Experimental Approach for Heat Transfer Analysis of Industrial Furnaces

G. Petrone[1], A. Adorisio[2], S. Adorisio[2], M. Calderisi[3], A. Cecchi[3], M. Scionti[1], F. Turchi[3]
[1]BE CAE & Test, Catania, Italy
[2]Gadda Industrie, Ivrea, Italy
[3]Laboratori Archa, Pisa, Italy

This paper deals with an integrated numerical and experimental analysis work aiming at the investigation of the thermal distribution inside an industrial furnace built for metal materials treatments. The main goal of the research is to find the geometrical and/or functional parameters responsible for a not homogeneous thermal distribution inside the internal volume of the furnace. During the ...

Human Torso Model for Heat Transfer Analysis

X. Xu[1], T. Patel[1], R.W. Hoyt[1]
[1]U.S. Army Institute of Environmental Medicine, Natick, MA, USA

A human torso model was created for heat transfer analysis. The torso was derived from the ‘Virtual Family’ whole-body voxel data from the ITIS Foundation (Zurich, Switzerland). Measurements were taken from the ITIS male along the axial plane at key anatomical landmarks and used to develop geometry in Solidworks. Individual components were created to represent the skin, fat, muscle, and bone ...

Use of Simulation in the Development of Next-generation Measurement Standards for Radiation Dosimetry

R. E. Tosh[1], H. Chen-Mayer[1]
[1]NIST, Gaithersburg, MD, USA

Calibration of field instruments used in radiation treatment clinics is currently traceable to NIST primary standards via protocols involving static, flat-field radiation beams. By contrast, radiation beams prescribed for treating cancer incorporate temporal and spatial modulation strategies in order to maximize dose to the tumor while sparing healthy tissue. Differences in the detector ...

COMSOL Multiphysics® as a Tool to Increase Safety in the Handling of Acetylene Cylinders Involved in Fires

F. Ferrero[1], M. Beckmann-Kluge[1], and K. Holtappels[1]

[1]BAM Federal Institute for Materials Research and Testing Division II.1 “Gases, Gas Plants”, Berlin, Germany

In this paper a mathematical model for predicting the heating-up of an acetylene cylinder involved in a fire is presented. In the simulations polynomial functions were used to describe the temperature dependency of the thermal properties of the cylinder interior, which is a complex system composed by a solid porous material, a solvent and acetylene dissolved in it. Model equations covered heat ...

Quick Search