Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

CFD Investigation of Cross Bubbly Flow through a Bubble Column with Rectangular Geometry

N. M. Musa [1], D. Kuvshinov [1], P. Rubini [1],
[1] The University of Hull, Hull, East Yorkshire, United Kingdom

Impact of human activities on the climate is evident, and the recent anthropogenic production and discharge of greenhouse gases into the atmosphere is highest in history. The current climate change have had worldwide influence on human and natural systems for example; global warming, melting of ice and snow, and rise in sea level etc. (AGECC 2010, Council 2013, IPCC, 2014). Increase in the ...

Compressible Flow Modelling Applied to Depressurization Process

V. Bruyère [1], T. Paris [2], P. Namy [1],
[1] SIMTEC, Grenoble, France
[2] CEA DAM, Is-sur-Tille, France

In order to predict and optimize the design of pipes and reservoirs during a depressurization process, the gas behavior must be precisely understood. Numerical modeling is an effective tool to study and understand the effect of each gas properties on the gas behavior. Nevertheless, compressible flow modeling still remains quite challenging, especially when the Mach number is close to one. In ...

Heat Flux Predictions for a 3-D Compost Model

M. Teutli [1], Jiménez[1], Lozano[1], Peláez[1], J. Roque[2], and I. González[3]
[1]BUAP, Puebla, Mexico
[2]Universidad Veracruzana, Xalapa, VZ, Mexico
[3]UAM, Mexico City, Mexico

A 3-D model for compost was constructed taking as geometry basis a truncated cone, with dimensions of 4 m radius and 3 m height; in this structure an energy balance is applied for a two phase system (solid-air). Compost energy processes are modeled using COMSOL with a modified heat transfer equation which includes: volumetric heat capacity, chemical oxidation and biological growing and ...

Use of COMSOL as a Tool in the Design of an Inclined Multiple Borehole Heat Exchanger

E. Johansson[1], J. Acuña[1], B. Palm[1]
[1]Royal Institute of Technology KTH, Stockholm, Sweden

A field of connected boreholes can be used both for cooling, heating and storage purposes. The boreholes transfer heat to or from the ground, which over time changes the temperature in the ground. It is important that the borehole field is properly sized and evaluated before the construction. This study presents results from borehole field evaluations of inclined boreholes used for cooling ...

Multiphysics Between Deep Geothermal Water Cycle, Surface Heat Exchanger Cycle and Geothermal Power Plant Cycle

L.W. Wong[1]
[1]International Centre for Geothermal Research, Helmholtz Centre Potsdam, GFZ German Research Centre For Geosciences, Telegrafenberg, Potsdam, Germany

Within the framework of Groß Schönebeck project in the North German Basin of Germany, multiphysics between deep geothermal reservoir, boreholes, heat exchangers and power plant is crucial to study lifecycle behavior of each component thereafter a later coupling to study lifecycle and recovery of the overall geothermal system. Study is divided into geothermal water cycle, surface heat exchanger ...

Numerical Design of a Test Plant for Dynamic Analysis of High Temperature Thermoelectric Generators

M. Rohne [1], A. Schlott [1], V. Pacheco [1], J. Meinert [1],
[1] Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Branch Lab Dresden, Dresden, Germany

Thermoelectric generators (TEG) use Seebeck’s effect to directly convert heat into electricity. TEG represent, therefore, a promising option for energy harvesting of waste heat, for example in car exhaust systems. To investigate the dynamic behavior of high temperature TEG, a test facility was numerically designed and finally constructed. Transient thermal simulations were performed in order to ...

Multiphysics Process Simulation of Static Magnetic Fields in High Power Laser Beam Welding of Aluminum

M. Bachmann[1], V. Avilov[1], A. Gumenyuk[1], M. Rethmeier[1]
[1]BAM Federal Institute for Materials Research and Testing, Berlin, Germany

The article deals with the application of the Hartmann effect in high power laser beam welding of aluminum. The movement of liquid metal in a magnetic field causes electric currents which build a Lorentz force that decelerates the original flow. The numerical model calculates the influence of a steady magnetic field on partial penetration keyhole laser beam welding of aluminum. Three-dimensional ...

Application of COMSOL Multiphysics in the Study of Heat Transfer in Solids: Comparison with Measurements Obtained by Means of Infrared Photothermal Radiometry

V.M. Suárez Quezada[1], J.H. Wong[1], J.A. Calderón Arenas[1], E. Marín Moares[1], José Bruno Rojas Trigos[1], Antonio Gustavo Juarez Gracia[1], Jonathan F Guarachi solano[1]
[1]Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Unidad Legaria del Instituto Politécnico Nacional, Mexico, Distrito Federal, Mexico

We report the use of Heat transfer Module of COMSOL Multiphysics and a technique based on Infrared Photothermal Radiometry to study the heat transfer of a homogeneous and isotropic solid material excited by a periodic laser beam on the front side of the sample, and one infrared detector on the rear side in order to obtain the evolution of difference of temperature with the time exposure. We use ...

3D Unsteady CFD with Heat and Mass Transfer Simulations of Solar Adsorption Cooling System for Buildings

W. Yaici [1], E. Entchev [1], J. Ranisau [1],
[1] CanmetENERGY Research Centre, Natural Resources Canada, Ottawa, ON, Canada

In recent years, extensive attention has been paid on the application of solar cooling for buildings. Amongst cooling technologies, low-temperature solar-driven adsorption cooling systems are emerging viable alternatives to electricity-driven vapour compression systems. They seem to have a promising market potential. The greatest challenge for their widespread use is the reduced thermal and mass ...

Numerical Study of the Effect of Fins on the Natural Convection Driven Melting of Phase Change Material

C. Liu, and D. Groulx
Mechanical Engineering
Dalhousie University
Halifax, NS

Natural convection has to be accounted and simulated for in order to properly describe the physics encounter in the phase change process. A simplified two-dimensional model was created in COMSOL 4.1. Natural convection was accounted for by adding a volume force and using the Boussinesq approach. The heat transfer and laminar flow physics were used. Results showed that natural convection ...