Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Thermal Model and Control of Metal-Organic Chemical Vapor Deposition Process

J. L. Ebert [1], S. Ghosal [1], N. Acharya [1]
[1] SC Solutions, Inc., Sunnyvale, CA, USA

Metal-Organic Chemical Vapor Deposition (MOCVD) is used for the manufacture of Multi-Quantum Well Light Emitting Diodes (MQW LEDs). The process uses a carrier gas flow containing a dilute mixture of metal organic precursors, Tri-Methyl Gallium (TMG) and Tri-Methyl Indium (TMI), to epitaxially deposit GaN and InGaN on a heated wafer of diameter ranging from 2" to 8". The gas mixture flows into a ...

Natural Convection Effects on the Solidification in Cylinders at Different Filling Percentages

R. Bourisli [1], A. Alshayji [1],
[1] Kuwait University, Kuwait City, Kuwait

The solidification of a fluid in a partially-filled circular cylinder is encountered in a number of industrial processes and in the oil and gas sector. The characteristics of the process depends on various fluid and geometrical parameters. In the current study, a fluid with temperature-dependent density in a partially-filled circular cylinder solidifies because of a sudden drop in pipe surface ...

Heat Pipe Assisted Thermal Management of an HT PEMFC Stack

E. Firat[1], G. Bandlamudi[1], M. Crisogianni[1], P. Beckhaus[1], A. Heinzel[1]
[1]Centre for Fuel Cell Technology (ZBT), Duisburg,NRW, Germany

Heat management is crucial for the satisfactory operation of HT-PEM (High temperature polymer-electrolyte-membrane) fuel cells. Current work investigates the use of heat pipes in a HT PEMFC stack consisting of 24 cells, each with an active area of 300 cm^2. Heat pipes are known to be thermal superconductors operating on the principles of high convective heat transfer and phase transition. ...

Micromechanical Design of Novel Thermal Composites for Temperature Dependent Thermal Conductivity - new

R. C. Thiagarajan[1],
[1]ATOA Scientific Technologies Pvt. Ltd., Bengaluru, Karnataka, India

Materials with an order variable in thermal conductivity as a function of temperature are desirable for thermoelectric heat energy recovery, building thermal insulation and solar thermal applications. Thermal Conductivity is an inherent material property. Engineering the fundamental thermal conductivity needs manipulation at thermal photon level for conventional materials. Engineering thermal ...

Use of COMSOL Multiphysics® for IAQ Monitoring in Cleanrooms - new

G. Petrone[1], C. Balocco[2]
[1]BE CAE & Test, Catania, Italy
[2]Department of Industrial Engineering, University of Firenze, Firenze, Italy

High levels of Indoor Air Quality (IAQ) in Operating Theatres (OT) is an important issue in order to contribute in prevention of Surgical Site Infections (SSI). Despite of specific plant layouts are applied for OT ventilation (e.g. unidirectional flow), the effective use conditions can heavily modify the design microclimate and air quality levels. Medical staff presence and movements and sliding ...

Heat and Moisture in Wooden Bearings of Monuments

H. L. Schellen [1], M. Spierenburg [2], A. W. M. van Schijndel [1],
[1] Eindhoven University of Technology, Eindhoven, The Netherlands
[2] 2DPA Cauberg-Huygen, Amsterdam, The Netherlands

Nowadays, thermal insulation is applied to most buildings. However, this proves to be a challenge for most monumental buildings. When insulation needs to be applied at the interior side of a building, thermal bridges are inevitable. Wooden beam ends beared in an external wall are an example of such a (hygro-)thermal bridge. Adding interior insulation introduces a risk at mould growth and can ...

Local Conduction Heat Transfer in U-pipe Borehole Heat Exchangers

J. Acuna[1] and B. Palm[1]

[1]Department of Energy Technology, KTH, Stockholm, Sweden

The most common way to exchange heat with the bedrock in Ground Source Heat Pump (GSHP) applications is circulating a fluid through a U-formed closed loop in vertical boreholes drilled several tenths of meters into the ground. This study presents and compares the results of eight cross sectional U-pipe Borehole Heat Exchanger configurations. Values from recent experimental temperature ...

Porous Media Based Model for Deep-Fat Vacuum Frying Potato Chips

A. Warning, A. K. Datta, A. Dhall, and D. Mitrea
Department of Biological and Environmental Engineering
Cornell University
Ithaca, NY

A multiphase porous media model involving heat and mass transfer within a potato chip was implemented in COMSOL 3.5a. The diffusive flux in oil and liquid water was modeled from capillary driven flow while the gas phase was modeled using binary diffusion. A non-equilibrium water evaporation rate was used and Darcy's law for the momentum equation to solve for the convection of each species. ...

Early Stage Melt Ejection in Laser Percussion Drilling

T. Eppes[1]
[1]University of Hartford, Hartford, CT, USA

Laser percussion drilling is widely used in the aerospace industry to produce cooling holes in jet engine components. This process is a thermal, contact-free process which involves firing a sequence of focused optical pulses onto a target material [1-4]. During each optical pulse, the central portion of the target area heats to a liquid then vapor state where the expanding gas produces a recoil ...

Multiphysics Process Simulation of the Electromagnetic-Supported High Power Laser Beam Welding of Austenitic Stainless Steel

M. Bachmann[1], V. Avilov[1], A. Gumenyuk[1], M. Rethmeier[1]
[1]BAM Federal Institute for Materials Research and Testing, Berlin, Germany

The application of an oscillating magnetic field on the high-power full-penetration laser beam welding process of a 20 mm thick stainless steel plate was numerically and experimentally investigated. In the simulations, three-dimensional heat transfer and fluid dynamics as well as electromagnetics were solved taking into account the most important physical effects of the process, namely the ...