Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Push or Pull, How Does Silk Flow?

J. Sparkes [1],
[1] University of Sheffield, Sheffield, UK

Silk is one of the longest used and most recognizable textiles that we, as a society, use regularly. We see it as a luxury good, worn as an indicator of success and value. However, despite mankind having domesticated and farmed silkworms for millennia, we still know relatively little about the manufacturing process which converts the liquid silk into the fibers we are so familiar with. Increased ...

Modeling Flow of Magnetorheological Fluid through a Micro-channel

N.M. Bruno[1], C. Ciocanel[1] and A. Kipple[2]
[1]Department of Mechanical Engineering, Northern Arizona University, Flagstaff, Arizona, USA
[2]Dept. of Electrical Engineering and Computer Sciences, Northern Arizona University, Flagstaff, Arizona, USA

This paper presents the approach taken through the utilization of COMSOL Multiphysics 3.5a, to develop a model that simulates the flow of a magnetorheological (MR) fluid through a micro-channel. The model was developed as an aid in the analysis of a micropump that produces flow by means of displacement of a MR fluid slug within a microchannel.

Modeling Void Drainage with Thin Film Dynamics

J.J. Gangloff Jr.[1], W.R. Hwang[2], S.G. Advani[1]
[1]Center for Composite Materials, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
[2]School of Mechanical Engineering, Gyeongsang National University, Jinju, Gyeongsangnam-do, Korea

Voids in composite materials can lead to degraded structural performance. The following is a study of voids or bubbles in uncured viscous polymer resin during composites processing. The goal is to determine if voids can successfully migrate towards vacuum pathways, coalesce with the pathways, and escape. Inherent to the coalescence process is the drainage and rupture of the resin thin film ...

RFID-Enabled Temperature Sensor

I.M. Abdel-Motaleb[1], K. Allen [1]
[1]Department of Electrical Engineering, Northern Illinois University, DeKalb, IL, USA

The design of a RFID-enabled temperature sensor is described in this paper. In this sensor, a change in temperature causes structural beams to bend, which results in a proportional displacement of the plates of the capacitor. Plates\' displacement results, in turn, in changing the value of its capacitance. The capacitor of the sensor is coupled to the LC resonant network of a passive RFID tag. ...

µHeater on a Buckled Cantilever Plate for Gas Sensor Applications

A. Arpys Arevalo Carreno[1], E. Byas[1], I.G. Foulds[1]
[1]King Abdullah University of Science and Technology, Thuwal, Mecca, Kingdom of Saudi Arabia

In semiconductor gas sensors, the base of the gas detection is the interaction of the gaseous species at the surface of the semiconducting sensitive material. Since the chemical reactions at the surface of the sensor material are functions of temperature. We simulate our µHeater design on a Buckled Cantilever Plate (BCP). Such structure allows the sensor to be suspended for thermal insulation. ...

AC Electrothermal Characterization of Doped-Si Heated Microcantilevers Using Frequency-Domain Finite Element Analysis - new

K. Park[1], S. Hamian[1], A. M. Gauffreau[2], T. Walsh[2]
[1]Mechanical Engineering Department, University of Utah, Salt Lake City, UT, USA
[2]Department of Mechanical, Industrial & Systems Engineering, University of Rhode Island, Kingston, RI, USA

This work investigates the frequency-dependent electrothermal behaviors of freestanding doped-silicon heated microcantilever probes operating under the periodic (ac) Joule heating. The transient heat conduction equation for each component (i.e., the low-doped heater region, the high-doped constriction region, and the high-doped leg region) is solved using the general heat transfer module for DC ...

Understanding the Role of Nanomaterials in DNA Biosensors Through Finite Element Analysis

J. C. Kumaradas[1], A. Zhang[2], Y. D. Davletshin[1]
[1]Ryerson University, Toronto, ON, Canada
[2]University of Waterloo, Waterloo, ON, Canada

Tremendous progress is being made in the integration of nanoparticles into micro-analytical systems for biosensing. These materials are shown to enhance the analyte capture capability of biosensing platforms. We have implemented a computational model that considers the sensor’s geometry, size, analyte concentration and type to predict the number of nucleic acid molecules captured by ...

Modeling an electric cell actuator and loudspeaker using COMSOL Multiphysics

W. J. Wu
NTU Nano-Bio MEMS Group
National Taiwan University,
Taiwan

This presentation presented the following: * The building of an FEA model of an electric cell actuator using COMSOL Multiphysics * Validation of this model through the AVID and ESPI measurement systems * The building of an FEA model of an electric loudspeaker using COMSOL Multiphysics * Validation of this model throughan acoustic measurement systems This paper is in Chinese.

FEM-Simulation of a Printed Acceleration Sensor with RF Readout Circuit

H. Schweiger[1], T. Göstenkors[1], R. Bau[1], D. Zielke[1]
[1]Dept. Engineering Sciences and Mathematics, University of Applied Sciences Bielefeld, Bielefeld, Germany

In this paper we want to figure out the development of a capacitive acceleration-sensor system with the FEM-Method. The sensor-system is in the position to detect accelerations in the range of ±20 g. Furthermore the sensor-element contains a printed RF-inductance, which is used for contactless data transfer. On the one hand the simulation of the L-C-oscillating circuit using the RF Module of ...

Positioning System for Particles in Microfluidic Structures

D. Kappe[1], A. Hütten[1]
[1]University of Bielefeld, Bielefeld, Germany

The possibility to detect and probe molecules in microfluidic devices gives rise to interesting applications. There are different approaches how to detect and probe particles, but a common step, for most methods, is to place the particles on a sensor. This can be done by applying external field gradients, or in this case by utilizing gravitational and hydrodynamic effects. Therefore, the sensor ...