Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

SD Numerical Simulation Technique for Hydrodynamic Flow Gas-Solids Mixing

I. Mantilla[1], S. De Vicente[2]
[1]National University of Engineering, Lima, Perú
[2]Polytechnic University of Madrid, Madrid, Spain

We formulate a new mathematical model of gas-solids mixing hydrodynamic flow [1] in a combustion chamber with a fluid bed system used in the combustion of mineral coal waste. This model in study is called Model Gas-Solids Mixing and it is constructed by averaging the conservation equations (mass and momentum) for a two-phase flow, which takes into account the existence of a small parameter rho ...

Mathematical Modeling of Glucose Responsive Hydrogels

A. Pareek [1], T. Mathur [2], V. Runkana [1],
[1] Tata Research Development and Design Centre, Tata Consultancy Services, Pune, India
[2] Indian Institute of Technology, Delhi, India

Diabetes mellitus affects 387 million people across the world according to the latest estimates of International Diabetes Foundation. Insulin is one of the major drugs required to keep the glucose level within desired limits in a diabetic patient. Insulin is generally administered to a patient as a subcutaneous injection and consists of two forms namely, basal and bolus. The basal dosage is ...

Interface Phenomena for a Multifunctional Air-Water Micro-Particle Collecting and Filtering System

E. Lacatus [1], A. Tudor [1], G. C. Alecu [1],
[1] Polytechnic University of Bucharest, Romania

The confinement clean rooms used in industry are susceptible to higher count of particles per cubic meter of air after the usual work program. To decrease the economic and technological effects of particle concentration a micro-cleaning device was elaborated. A first approach of a 3D model of the device was produced and different issues were found. Using COMSOL Multiphysics software to identify ...

Benchmarking COMSOL - Part 2: CFD Problems

Darrell Pepper
Professor of Mechanical Engineering,
University of Nevada - Las Vegas

Using COMSOL 3.5a, a set of benchmark problems requiring the use of the COMSOL Computational Fluid Dynamics (CFD) module has been simulated. Several of the problems include fluid-heat transfer interactions (Computational Heat Transfer - CHT). The four problems are: flow over a 2-D circular cylinder compressible flow in a shock tube incompressible heated flow over a 2-D backward facing step ...

Two-Phase Flow Models of Gas Generation and Transport in Geological Formations

O. Silva [1]
[1] Amphos 21 Consulting S.L. - iMaGe Consortium, Barcelona, Spain

Gas generation and transport through porous media is a process common to many field applications such as radioactive waste and underground gas storage. In these operations, the gas phase evolution depends on the thermodynamic conditions at depth, the properties of the fluids (density, viscosity, surface tension) and the geological formation (permeability, porosity, retention curve), as well as ...

Plasma Edge Simulations by Finite Elements using COMSOL

C. Hollenstein, and A. Howling
Ecole Polytechnique Fédérale de Lausanne, Switzerland

Finite elements using COMSOL Multiphysics have been used to simulate the edge plasma in a large area capacitively coupled RF reactor. In order to reduce numerical difficulties simplified reactor edge geometries have been used. First results show the importance of electrostatic double layers within this plasma. In addition the non-uniform behaviour of the plasma sheath around convex and ...

Birefringence Induced in Optical Rib Waveguides by Thermal and Mechanical Stresses - new

G. Grasso[1], V. M. N. Passaro[1], F. De Leonardis[1]
[1]Photonics Research Group, Politechnic Institute of Bari, Bari, Italy

In this paper a multiphysics approach to study the optical properties of integrated waveguides influenced by thermal and mechanical stress is presented. The heating and pressure effects are evaluated by means the Heat Transfer and Structural Mechanics modules respectively. Finally, the electromagnetics capabilities of the AC/DC Module are used in order to evaluate the optical eigenfunctions and ...

Multiphysics Modelling of a Microwave Furnace for Efficient Solar Silicon Production

N. Rezaii [1], J. P. Mai [1],
[1] JPM Silicon GmbH, Braunschweig, Germany

The JPM Silicon GmbH presents a novel method for the production of solar grade silicon in the microwave oven. This method can specially reduce the energy costs and increase the efficiency of the process. A numerical model is developed which depicts the physical, chemical and electromagnetic phenomena of silicon production process. In order to increase the efficiency of the system, it is ...

Simulation of an Immunodetection System Based on Magnetic Nanoparticles

A. Rabehi [1], H. Kokabi [1], L. Chen [2], K. A. Ngo [3], H.-J. Krause [2]
[1] Sorbonne Universités, Laboratoire d’Electronique et Electromagnétisme, Paris, France
[2] Peter Grünberg Institute, Bioelectronics, Forschungszentrum Jülich, Germany
[3] Sorbonne Universités, Laboratoire Interfaces et Systemes Electrochimiques (LISE), Paris, France

In a first approach towards application of the magnetic frequency mixing technique to microfluidic structures, microplanar coils have to be designed along with sample reservoir. For this, a COMSOL Multiphysics® electrical model along with an analytical calculation is used in order to optimize the dimensions of the coil. This is to ensure a proper distribution and value of magnetic flux density ...

FEM Based Studies of a Mg/Al Hybrid Component Joint Regarding Corrosion Prediction

D. Höche[1]
[1]Helmholtz-Zentrum Geesthacht, Germany

The model can be utilized for a virtual design of a hybrid joint interms of corrosion prevention. Structures can be optimized by the simulations by tailoring the parameters to get the most suitable result towards a Computer-Aided Engineering CAE regarding corrosion protection. This kind of computer based studies is a very useful method to accelerate developments in light weight structural design ...