Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

COMSOL Multiphysics® Model of a Solar Dryer - new

E. C. Santos[1], J. H. Sales[1], C. Lima[2]
[1]Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
[2]Instituto Federal da Bahia, Irecê, BA, Brazil

This paper compares the efficiency of a vertical solar dryer vis-à-vis the traditional drying method by the means of a computer simulation. The said program considers geometric, thermal and mechanical effects so as to simulate heat transfer via conduction, convection and radiation. We later ran additional tests with simulated data on the greenhouses(traditional method) so as to compare the ...

Understanding the Magnetic Field Penetration in Mesoscopic Superconductors via COMSOL Multiphysics® Software - new

I. G. de Oliveira[1]
[1]Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil

Introduction: One of the main characteristic of the superconductors is its diamagnetic response of applied magnetic fields. The superconductors refuse the penetration of magnetic field into its interior, it is the well know Meissner effect, B=0 into the superconductor sample. However when the applied field reach a determined value, the magnetic field can enter. There are two different ways of ...

Finite Element Analysis of Transient Ballistic-Diffusive Heat Transfer in Two-Dimensional Structures - new

S. Hamian[1], T. Yamada[2], M. Faghri[3], K. Park[1]
[1]University of Utah, Salt Lake City, UT, USA
[2]Lund University, Lund, Sweden
[3]University of Rhode Island, Kingston, RI, USA

For the last two centuries, the conventional Fourier heat conduction equation has been used for modeling a diffusive nature of macroscale heat conduction by considering the energy conservation and Fourier's linear approximation of heat flux. However, it cannot accurately predict heat transport when the length scale is comparable to or smaller than the mean free path of thermal energy carriers or ...

Diffusion and Reaction in Fe-Based Catalyst for Fischer-Tropsch Synthesis Using Micro Kinetic Rate Expressions - new

A. Nanduri[1], P. L. Mills[1]
[1]Department of Chemical & Natural Gas Engineering, Texas A&M University, Kingsville, TX, USA

Fischer-Tropsch synthesis (FTS) is a highly exothermic polymerization reaction of syngas (CO+H2) in the presence of Fe/Co/Ru-based catalysts to produce a wide range of paraffins, olefins and oxygenates, often known as syncrude. Multi-Tubular Fixed Bed Reactors (MTFBR) and Slurry Bubble Column Reactors (SBCR) are widely employed for FTS processes. The scale-up of MTFBR is complicated by the ...

Modeling a Lung-on-a-Chip Microdevice

M. J. Hancock [1], N. Elabbasi [1],
[1] Veryst Engineering, LLC., Needham, MA, USA

Organ-on-a-chip microdevices combine microfluidics, MEMS, and biotechnology techniques to mimic the multicellular architectures, tissue-tissue interfaces, physicochemical microenvironments, and vascular perfusion of the body.[1] Such devices are being developed to provide better levels of tissue and organ functionality compared with conventional cell culture systems, and have great potential to ...

Modeling of Space-Charge Effects in 3D Thermionic Devices

P. Zilio [1], W. Raja [2], A. Alabastri [3], R. Proietti Zaccaria [2]
[1] Istituto Italiano di Tecnologia, Italy
[2] Istituto Italiano di Tecnologia, Italy
[3] Rice University, USA

The formation of space charge clouds is a well known problem that affects thermionic emitters in regimes of high current emission. Although some analytical models have been presented, suitable for 1D geometries, the modeling of the problem in complex 3D structures remains a challenge due to the mutual coupling between electron trajectories and field they produce. Here we propose a model able to ...

Field Joint Coatings for Deep Sea Pipelines - new

R. Verhelle[1], L. Van Lokeren[1], S. Loulidi[1], H. Boyd[2], G. Van Assche[1]
[1]Physical Chemistry & Polymer Science, Vrije Universiteit Brussel, Brussels, Belgium
[2]Heerema Marine Contractors, Leiden, The Netherlands

COMSOL Multiphysics® software is used to model the field joint application process on carbon steel pipelines for deep sea crude oil transportation, taking into account not only heat transfer, cure kinetics, and crystallization, but also thermal, cure and crystallization shrinkage and the resulting interfacial thermal stresses. Experimental data from the raw materials are implemented in the model ...

Heat Conduction in Porous Absorption Layers for Thermography Applications - new

L. Helmich[1], A. Huetten[1]
[1]Bielefeld University, Bielefeld, Germany

Thermography measurements on metallic thin films are challenging due to reflections from the environment. We present a thin "gold black" absorption layer to deal with this issue. A multiphysics model is introduced to correct the experimentally obtained data for undesirable heat transfer effects between the metallic sample and the absoption layer.

Keyhole Behavior During Spot Laser Welding

V. Bruyere [1], C. Touvrey [2], P. Namy [1]
[1] SIMTEC, Grenoble, France
[2] CEA DAM, Is-sur-Tille, France

The formation of porosities in spot laser welding depends on complex thermo-hydraulic phenomena. To understand and control these mechanisms, the COMSOL Multiphysics® software is used to model both the interaction and cooling stages of an isolated impact made with a Nd:YAG pulsed laser. The model is based on the Phase Field method in order to apprehend the evolution of the liquid-gas interface ...

COMSOL Multiphysics® 在热发电用真空集热管设计中的应用

赵旭山 [1], 郝雷 [1], 蒋利军 [1], 米菁 [1], 杨海龄 [1],
[1] 北京有色金属研究总院,北京,中国

随着能源紧张、油价攀升,环境污染严重,利用可再生绿色能源又成为不懈努力的方向。槽式太阳能热发电技术具有兼容性强、对电网冲击小、性价比高、发电成本低、可存储可调度等特点,近年来得到了迅猛发展,其核心部件为高温太阳能真空集热管,如图1所示。本研究利用 COMSOL Multiphysics® 针对真空集热管真实工况下的动态过程开展研究,并在此基础上开展集热管结构的优化设计。 由图1可知:集热管在电站中服役工况下,槽面会聚的太阳光主要集中于集热管下半面,上半面接收的会聚太阳光较少;导热工质自吸收管一端进入,接收会聚太阳光辐照能量,从吸收管另一端流出,流入→流出过程中,导热工质被加热;集热管外表面与外部环境通过热辐射和对流两种方式换热;吸收管与玻璃罩管间形成的环形密闭高真空区域各内表面通过热辐射换热,不考虑对流;集热管两端支撑固定于聚光器上,由于本身自重和热应力 ...