Quick Search

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Influence of Electrode Kinetics on Lithium-ion Battery Characteristics

H. Machrafi[1,2], S. Cavadias[2]
[1]University of Liège, Thermodynamics of Irreversible Phenomena, Liège, Belgium
[2]University Pierre et Marie Curie, Laboratoire des Procédés Plasma et Traitement de Surface, Paris, France

The purpose of this work is to show whether an important difference in Lithium solid concentration and electrolyte concentration can be observed in a Lithium-ion battery model, when considering either the Butler-Volmer kinetics or the Tafel kinetics for describing the electrode kinetics (including a boundary layer between the electrolyte and the electrode particles). During discharge, the lithium ...

Geomagnetic Modeling with COMSOL Multiphysics® Software - new

G. Ha[1], S. S. Kim[1], J. H. Kim[1]
[1]Chungnam National University, Daejeon, Korea

Here we aim to advance geomagnetic modeling approaches using COMSOL Multiphysics® software and improve the degree of detail that can be obtained from the measured magnetic field. First, we carried out benchmark tests by comparing the computed results using the widely used analytic solutions for rectangular bodies with arbitrary direction of magnetization with those from the AC/DC Module of ...

Modeling and Simulation of Membrane Contactor Employed to Strip CO2 from Rich Solvents via COMSOL Multiphysics® - new

N. Ghasem[1], M. Al-Marzouqi[1], N. A. Rahim[1]
[1]United Arab Emirates University, Al-Ain, United Arab Emirates

A mathematical model is developed for the stripping of CO2 from rich solvent. The rich solvent (aqueous NaOH) is used in CO2 absorption from natural gas through gas-liquid hollow fiber membrane contactor. The polyvinylidene fluoride (PVDF) hollow fiber membrane was fabricated via thermally induced phase separation techniques. COMSOL Multiphysics software package is used in solving the set of ...

Using Microwaves for Extracting Water From the Moon

Edwin Ethridge
Senior Materials Scientist, NASA Marshall Space Flight Center

A scientific hypothesis states that cryogenic trapped water is just under the surface of lunar soil at the poles in permanently shadowed craters. Microwave energy can be used to efficiently extract this water from permafrost. COMSOL permits calculation of the heating of simulated lunar soil using measured temperature dependent dielectric properties. Calculations at different microwave ...

3D Thermal-Diffusion Analysis on a Moisture Loaded Epoxy Sample

B.G. Sammakia, S. Madduri, and W. Infantolino
Binghamton University, Binghamton, NY, USA

COMSOL Multiphysics was used to simulate an experiment in which the hygroscopic swelling in an epoxy material was measured along a temperature ramp. A simultaneous solution was sought for temperature and moisture concentration distribution in a moisture loaded epoxy sample. Initially the multiphysics problem was broken down into two separate cases - transient heat transfer analysis and transient ...

Application of Multiphysics in the Simulation of Metallurgical Processes

M. Ek, and D. Sichen
Materials Science and Engineering, Royal Institute of Technology, Stockholm, Sweden

In the steelmaking processes, the stirring of the metal bath by argon (or nitrogen) injection is a widely used method to achieve chemical or thermal homogeneity. Computational fluid dynamics can be used as a very powerful tool to gain an insight into the mass transfer and heat transfer in liquid steel. In this paper, the flow behaviors in two different steelmaking reactors were simulated using ...

Chip Drop After Silver Sintering Process

M.H. Poech[1], M. Weiß[1], and K. Gruber[1]

[1]Fraunhofer Institute for Silicon Technology, Itzehoe, Germany

Since a couple of years, sintering becomes more and more important for power electronics. To press a semiconductor under high temperature in silver paste on a substrate promises benefits for durability. Tests with semiconductors of different thickness expose some problems. After the cool down, some of them fall slightly from the substrate. Stress in the boundary layer, caused by different ...

Plasma Edge Simulations by Finite Elements using COMSOL

C. Hollenstein, and A. Howling
Ecole Polytechnique Fédérale de Lausanne, Switzerland

Finite elements using COMSOL Multiphysics have been used to simulate the edge plasma in a large area capacitively coupled RF reactor. In order to reduce numerical difficulties simplified reactor edge geometries have been used. First results show the importance of electrostatic double layers within this plasma. In addition the non-uniform behaviour of the plasma sheath around convex and ...

FEA Simulation of Passive Ferrofluid Cooling Systems

Z. Fang[1,2], R. O'Handley[2], Y. Liu[2], and M. Yang[2,3]
[1]Pennsylvania State University, University Park, PA, USA
[2]Ferro Solutions Inc., Woburn, MA, USA
[3]Massachusetts Institute of Technology, Cambridge, MA, USA

Here we investigate a promising passive cooling method through making advantage of the unique properties of ferrofluid. When a magnetic dipole or a permanent magnet is put at the hot side of a system, it will attract the cold ferrofluid to the hot place and displace the hot ferrofluid since cold ferrofluid below Tc has much stronger magnetization than that of hot ferrofluid above Tc. Then the hot ...

Comparison Between Flow Simulations and Foam Experiments in Porous Media

R.R. Thorat[1], H. Bruining[1]
[1]Petroleum Engineering, CiTG, TU Delft, Delft, The Netherlands

Recovery of oil by gas injection is usually inefficient due to the low viscosity of the gas, which results in bypassing of the oil. By adding surfactant solutions it is possible to get in-situ foam formation. Foam has a much higher “viscosity” and hence does not bypass the oil, leading to enhanced oil recovery. In this context, the foam propagation is studied experimentally and theoretically. ...