Veröffentlichungen und Präsentationen

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Simulation of Electromagnetic Stirrers and Brakes Applied in the Metallurgical Field

C. Mapelli
Politecnico di Milano

The control of the flux within continuous casting systems used in the metallurgical field can be obtained through the application of electromagnetic. The model here has been solved through a linear time-harmonic solver. The results of the electromagnetic model have then been applied to the fluid-mechanics model through volume Lorentz forces.

Coupled Structural and Magnetic Models: Linear Magnetostriction in COMSOL

J. Slaughter[1]
[1]Etrema Products, Inc., Ames, Iowa, USA

Accurate modeling of magnetostrictive materials and devices requires coupling of electrical, magnetic, mechanical, and possibly acoustic domains. There are relatively few finite  element software packages that include all these physical models and even fewer that include magnetostrictive models. Comsol Multiphysics was used to create linear magnetostrictive models with fully coupled physics. ...

Optimization of Extrusion Processes for non-Newtonian high-Viscous Fluids with Wall Slip and Shear Thinning Effects

W. Hoffmann[1], M. Scholz[1]
[1]SiCo-Solutions, Stuttgart, Germany

Simulation of the flow behaviour of non-Newtonian fluids with high viscosities leads to special material models with specific material parameters. In this presentation, a material model consisting of 4 material parameters describing the flow itself and also the wall slip is presented. The investigations of the flow behaviour are based on COMSOL Multiphysics® using the Modules CFD, Structural ...

Sound Field Analysis of Monumental Structures by the Application of Diffusion Equation Model

Z. S. Gul[1], N. Xiang[2], M. Caliskan[3]
[1]Department of Architecture, Middle East Technical University, Ankara, Turkey
[2]School of Architecture, Rensselaer Polytechnic Institute, Troy, NY, USA
[3]Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey

Sound energy distribution patterns within enclosed spaces are the basic concerns of architectural acoustics. Energy decays are analyzed for major acoustical parameter estimations, while spatial energy distribution and flow vectors are indicative in the analysis of sound energy circulation and concentration zones. In this study the acoustical field of a real-size multi-domed monumental structure ...

Numerical Simulation of Chamber Design for Pulsed Electric Fields Processing of Wet Olive Pomace

N. Varga[1], I. Perales[2], A. Portugal[2]
[1]ATEKNEA Solutions Hungary, Budapest, Hungary
[2]ATEKNEA Solutions Catalonia, Barcelona, Spain

The application of pulsed electric fields (PEF) is well known in the food industry as an advanced technology for mass transfer improvement. A new potential adaptation area of PEF could be extracting a valuable antioxidant called polyphenol from wet olive pomace (WOP) which is a by-product of olive oil production. The modelling includes the PEF effects on the WOP which is flowing through a ...

Modeling of Arc Welding Power Source

E. S. Tschoepke[1], J. A. E. Mazzaferro[1], G. Paz[1]
[1]Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil

Introduction: The main objective of the present work consists in modeling an arc welding heat source to allow predict peak temperature and cooling rate at specific points. The filler metal was deposited on a plate of 32mm thick with no chamfer, in bead on plate configuration, using five different preheat temperatures: -30°C, 30°C, 100°C, 150°C and 200°C. Use of COMSOL Multiphysics® ...

Finite Element Modeling and Simulation of Electromagnetic Forces in Electromagnetic Forming Processes: Case studies using COMSOL Multiphysics

A. N. Kumar[1], and M. Nabi[1]
[1] Department of Electrical Engineering, Indian Institute of Technology Delhi, India

Electromagnetic Forming (EMF) is a promising and relatively new manufacturing technology having significant advantages over conventional forming processes. A primary characteristic of this process is use of noncontact electromagnetic forces to achieve forming and shaping  of various metal work pieces. Mechanically, this is a high-strain rate forming process. From the modeling and simulation ...

Study of AC Electrothermal Phenomena Models

S. Loire, and P. Kauffmann
University of California
Santa Barbara, CA

Recently, electrokinetic flows have raised the interest of the scientific community. Driving flow with an electric field leads to promising applications for mixing, concentration, pumping application in lab on chips. However, current models are still inaccurate and don\'t fit the measures. The simple decoupled model developed by Ramos et al does not predict velocities for all parameters. ...

Modeling and Simulation of Dielectric Barrier Discharge Plasma Reactor for Nitrogen Fixation Reaction

B.S. Patil[1], Q. Wang[2], V. Hessel[2], J. Lang[3]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands
[2]Micro Flow Chemistry and Process Technology, Eindhoven University of Technology, Eindhoven, The Netherlands
[3]Innovation Management, Verfahrenstechnik & Engineering, Evonik Industries AG, Hanau-Wolfgang, Germany

Fixed nitrogen is used in many forms ranging from nitric acid to hydrogen cyanide and is used as such for industrial applications. The reactions to produce these products are highly endothermic and favored by high-temperature processing. The most basic route of chemically fixing nitrogen is the direct reaction of nitrogen and oxygen. However, the major challenge is to supply very high ...

Modelling of a 5 Cell Intermediate Temperature Polymer Electrolyte Fuel Cell (IT-PEFC) Stack: Analysis of Flow Configuration and Heat Transfer

A.S. Chandan[1], A. Mossadegh Pour[2], R. Steinberger-Wilckens[2]
[1]Centre for Hydrogen and Fuel Cell Research, University of Birmingham, Birmingham, United Kingdom
[2]University of Birmingham, Birmingham, United Kingdom

Polymer Electrolyte Fuel Cells (PEFCs) are a key technology in the advancement of society towards a low carbon future, in particular for use within the automotive sector. PEFCs are advantageous due to their low operating temperature (60-80 deg.C), quick start up times and responsiveness to load change. However, the requirement for expensive platinum, difficulty of water management and heat ...

Quick Search