Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Direct Pore-scale Modeling of Two-phase Flow Through Natural Media

I. Bogdanov, J. Kpahou, and A. Kamp
Open and Experimental Centre for Heavy Oil (CHLOE)
University of Pau
Pau, France

Direct numerical simulation of single- and two-phase flow in real pore systems is addressed in our paper. The X–ray computed micro-tomography technique has been applied first to reconstruct in details a real pore space of a subcentimetric sample. Making use of dedicated software (ScanIP) the generated porous medium images has been processed to build a 3D pore space geometry. Finally, based on ...

Models of Simple Iron Cored Electromagnets - new

J. Mammadov[1]
[1]University of Manchester, Manchester, UK

This report mainly discusses the implementation and results of a project proposal, “Modelling using Finite Element Methods”. The report is devoted to implementation, which is a model of an electromagnet. The software tool that is used to model the electromagnet is COMSOL Multiphysics®, a commercial FEA package provided by the University of Manchester, Computer Science School. Additionally, the ...

Models for Simulation Based Selection of 3D Multilayered Graphene Biosensors

E. Lacatus [1], G. C. Alecu [1], A. Tudor [1],
[1] Politehnica University of Bucharest, București, Romania

At the forefront of a new generation of sensors graphene and graphene composite materials are intensively studied for medical and biosensing applications. The outstanding electrical, mechanical and quantum properties of graphene make them a promising material solution to overlap the existing gap between biological and non-biological systems into a continuum like-viscoelastic integrated model. ...

Heat Transfer Modeling and Analysis of a Rotary Regenerative Air Pre-heater

R. K. Krishna, R. Ramachandran, and P. Srinivasan
Birla Institute of Technology and Science
Pilani
Rajasthan, India

An attempt has been made to sustain the efficiency of an air pre-heater(APH) in the long run. The APH is modeled using COMSOL Multiphysics in 3D and fed with real life conditions. Upon Heat transfer analysis, the temperature profile was found out and from that, the regions undergoing maximum thermal fatigue stress was identified. The plates of the APH to the periphery are subjected to maximum ...

Analysis of Hydrodynamic Plain Journal Bearing

Ravindra Mane[1], Sandeep soni[1]
[1]Department of Mechanical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India

This paper presents the 3D model of hydrodynamic plain journal bearing using COMSOL Multiphysics®. Using 3D Model, pressure distribution in plain journal bearing is obtained by steady state analysis of plain journal bearing. Generalized Reynolds equation is used for analyzing hydrodynamic journal bearing by COMSOL Multiphysics® as well as by analytical method by applying Sommerfeld boundary ...

Simulator for Automotive Evaporative Emissions Restraint Systems

S. Schlüter [1], E. Schieferstein [1], T. Hennig [1], K. Meller [1],
[1] Fraunhofer UMSICHT, Oberhausen, Germany

Fuel vapor restraint systems are used in vehicles to avoid discharge of volatile hydrocarbons from fuel tanks. The topic of this paper is the proper operation of fuel vapor restraint systems depending on the composition of bioethanol-fuel-blends. Experimental data serve as input to a model built with COMSOL Multiphysics® to simulate the performance of fuel vapor restraint systems depending on ...

Heat and Mass Transfer in Convective Drying Processes

C. Gavrila[1], A. Ghiaus[1], and I. Gruia[2]
[1]Technical University of Civil Engineering Bucharest, Faculty of Building Services, Bucharest, Romania
[2]University of Bucharest, Faculty of Physics, Bucharest, Romania

A dynamic mathematical model, based on physical and transport properties and mass and energy balances, was developed for the simulation of unsteady convective drying of agricultural products (fruits and vegetables) in static bed conditions. The model utilizes water sorption isotherm equations and the change in solid density due to the shrinkage phenomenon. The aim of this article is to describe ...

Heat Transfer and Phase Change Simulation in COMSOL Multiphysics® Software

N. Huc [1]
[1] COMSOL France, Grenoble, France

This session is devoted to phase change modeling in heat transfer simulations. The great interest in phase change comes from the outstanding thermal performance that it enables in particular for cooling or thermal protection applications. Alternatively, phase change can induce most of the energy cost in drying or cooking applications. In all of these cases, a thermal analysis is required to ...

Tunable MEMS Capacitor for RF Applications

H. S. Shriram[1], T. Nimje[1], D. Vakharia[1]
[1]BITS Pilani, Rajasthan, India

Radio Frequency MEMS devices have emerged to overcome the problem of high losses associated with semiconductors at high frequencies. A tunable MEMS capacitor is a micrometre-scale electronic device whose capacitance is controlled through different actuation mechanisms which govern the moving parts. It can have electrostatic or electrothermal actuators depending on the functional complexity and ...

COMSOL Multiphysics in Plasmonics and Metamaterials

S. Sun [1,2], and G. Guo [2,3]
[1]Physics Division, National Center for Theoretical Sciences (North), National Taiwan University, Taipei 10617, Taiwan
[2]Department of Physics, National Taiwan University, Taipei 10617, Taiwan
[3]Graduate Institute of Applied Physics, National Chengchi University, Taipei 11605, Taiwan

This paper will present research about: * Effective-medium properties of metamaterials: A quasi-mode theory * 2D complete band gaps from 1D photonic crystal * Optical microcavities