Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Modeling of Ultrasonic Transducers and Ultrasonic Wave Propagation for Commercial Applications Using Finite Elements with Experimental Visualization of Waves for Validation - new

D. R. Andrews[1]
[1]Cambridge Ultrasonics, Over, UK

Finite element (FE) modelling of ultrasonic propagation using COMSOL Multiphysics® simulations can be used to create images of waves. Unfortunately, in time-stepping solutions, it is possible for numerical instabilities to grow large and dominate the solution adversely. Any design of transducer that is based upon poorly-configured FE models is unlikely to perform as expected and will almost ...

The Design of a Multilayer Planar Transformer for DC/DC Converter with a Resonant Inverter - new

M. Puskarczyk[1], R. Jez [1]
[1]ABB Corporate Research Center, Krakow, Poland

Multilayer planar transformers are widely implemented in power electronic applications. The design process of these elements is complicated due to the complexity of a magnetic circuit and high frequency interactions between windings. Additionally, an analytical approach to the analysis (based on mathematical formulas) can be uncertain. The applied FEM method of the analysis can be a solution to ...

Exploratory FEM-Based Multiphysics Oxygen Transport and Cell Viability Models for Isolated Pancreatic Islets

P. Buchwald
Diabetes Research Institute and the Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA

Cellular-level oxygen consumption and cell viability models incorporating physiologically realistic assumptions and fully scaled 2D/3D geometries have been implemented in COMSOL Multiphysics for isolated pancreatic islets. Oxygen consumption was assumed to follow Michaelis-Menten–type kinetics and to cease when local concentrations fell below a critical threshold. Results are in good agreement ...

CVD Graphene Growth Mechanism on Nickel Thin Films - new

K. Al-Shurman[1], H. Naseem[2]
[1]The Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, AR, USA
[2]Department of Electrical Engineering, University of Arkansas, Fayetteville, AR, USA

Chemical vapor deposition is considered a promising method for synthesis of graphene films on different types of substrate utilizing transition metals such as Ni. However, synthesizing a single-layer graphene and controlling the quality of the graphene CVD film on Ni are very challenging due to the multiplicity of the CVD growth conditions. COMSOL Multiphysics® software is used to investigate ...

Models of Simple Iron Cored Electromagnets - new

J. Mammadov[1]
[1]University of Manchester, Manchester, UK

This report mainly discusses the implementation and results of a project proposal, “Modelling using Finite Element Methods”. The report is devoted to implementation, which is a model of an electromagnet. The software tool that is used to model the electromagnet is COMSOL Multiphysics®, a commercial FEA package provided by the University of Manchester, Computer Science School. Additionally, the ...

Lamb Waves and Dispersion Curves in Plates and It’s Applications in NDE Experiences Using Comsol Multiphysics

P. Gómez, J. P. Fernandez, and P. D. García
Hydro-Geophysics & NDE Modeling Unit
University of Oviedo
Mieres, Spain

In this paper, a model for numerically obtaining lamb wave modes and dispersion curves in plates is presented. It is shown that COMSOL Multiphysics can be employed to simulate the behavior of guided waves in dispersive plates, which is useful for NDE applications. A two dimensional steel plate (4x0.1 meters) is excited with a space-time impact point source. To model the point source, we use ...

Analysis of Hydrodynamic Plain Journal Bearing

Ravindra Mane[1], Sandeep soni[1]
[1]Department of Mechanical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India

This paper presents the 3D model of hydrodynamic plain journal bearing using COMSOL Multiphysics®. Using 3D Model, pressure distribution in plain journal bearing is obtained by steady state analysis of plain journal bearing. Generalized Reynolds equation is used for analyzing hydrodynamic journal bearing by COMSOL Multiphysics® as well as by analytical method by applying Sommerfeld boundary ...

Analysis of Heat, Mass Transport, and Momentum Transport Effects in Complex Catalyst Shapes for Gas-Phase Heterogeneous Reactions Using COMSOL Multiphysics

A. Nagaraj[1], and P. Mills[2]

[1]Department of Electrical Engineering and Computer Science, Texas A&M University, Kingsville, TX, USA
[2]Department of Chemical and Natural Gas Engineering, Texas A&M University, Kingsville, TX, USA

The global demand for sulfuric acid has been forecast to grow at an average of 2.6% per year from 2005 – 2010. The primary objective of this work is to analyze the performance of various heterogeneous catalyst shapes that have been proposed for the oxidation of SO2 to SO3 used in the manufacture of sulfuric acid. COMSOL Multiphysics provides a powerful numerical platform for simulation of ...

Modelling and Simulation of a Single Particle in Laminar Flow Regime of a Newtonian Liquid

D. Jamnani[1]

[1] Alpha Project Service, Vadodara, Gujarat, India

The interaction of a single particle in straight rectangular channel in laminar flow is modelled explicitly using the set of Navier Stokes equation for the fluid motion and Newton momentum equation for the particle motion in Cartesian coordinate system. The evaluation of integral force acting on the particle along with the behaviour of streamlines as a function of Reynolds number ReP < 120 is ...

Tunable MEMS Capacitor for RF Applications

H. S. Shriram[1], T. Nimje[1], D. Vakharia[1]
[1]BITS Pilani, Rajasthan, India

Radio Frequency MEMS devices have emerged to overcome the problem of high losses associated with semiconductors at high frequencies. A tunable MEMS capacitor is a micrometre-scale electronic device whose capacitance is controlled through different actuation mechanisms which govern the moving parts. It can have electrostatic or electrothermal actuators depending on the functional complexity and ...