Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
Despite its real advantages compare to seeded sublimation growth, SiC solution growth has never given convincing results. The difficulty of stabilizing the growth front, and thus avoiding any polycrystal formation results from a poor description and understanding of the coupled phenomena ... Mehr lesen
A three dimensional COMSOL Multiphysics, transient analysis, diffusion model has been adopted to model the transfers of water in the industrial concrete floors. To take into account the different initial saturation levels at the different levels of the slab, the model is divided into ... Mehr lesen
Recently, the concepts of fractal geometry have been introduced into electromagnetic and plasmonic metamaterials. With their self-similarity, structures based on fractal geometry should exhibit multi-band character with high Q factors due to the scaling law. However, there exist few ... Mehr lesen
Sulfur, which is incorporated in the biomass structure, is released into the product gas during gasification as hydrogen sulfide. Hydrogen sulfide is known to deactivate nickel based steam reforming catalysts by chemisorption on the metal surface during steam reforming process. ... Mehr lesen
A finite element model of a polymer electrolyte membrane fuel cell (PEMFC) is described in this paper. We divide the PEMFC into two separate and parallel 2D regions which are connected by the 1D regions representing the membrane electrode assembly (MEA). COMSOL Multiphysics® was used as ... Mehr lesen
The flow of self-consolidating concrete (SCC) in formwork fillings was simulated as the flow of a single phase yield-stress fluid between two infinite plates by COMSOL Multiphysics®. The flow of SCC with varied rheological properties (yield stress and plastic viscosity) was verified in ... Mehr lesen
Heat sinks for cryogenic applications using helium gas as the coolant are not readily available. They require to be designed specifically for the intended application. A finite element model was developed to study the feasibility and optimize the design. The FEM computing package COMSOL ... Mehr lesen
Metacomposites are new class of materials with unusual properties that can be engineered using existing materials with usual properties. The unusual properties of metacomposites are derived from the structure, analogues to atomic arrangement in crystal lattice. These material exhibits ... Mehr lesen
Results presented are a contribution to the design of a 5kW-DC-AC-converter for applications in forklifts. The device is located in a closed environment and entirely operated with passive cooling. Due to concurrent engineering approach and environmental conditions correct prediction of ... Mehr lesen
This project utilizes the heat transfer module of the COMSOL Multiphysics environment to model the effects that an ohmic heating probe will have on neural tissue. The model quantifies the thermal impact of active components embedded on a neural micro probe by solving the Penne’s bioheat ... Mehr lesen
