Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
This paper presents the multiphase 2D axisymmetric simulation of a three-dimensional flow-focusing microfluidic droplet generator using the laminar two phase flow, phase field interface in COMSOL Multiphysics®. The performance of the device is characterized at different flow conditions. ... Mehr lesen
With the advancement of medical devices and implants, many now require more advanced nonlinear, hyper-elastic materials such as elastomers to be extensively utilized in the body. This combined with the need to allow for considerably different, varying and graduated material responses ... Mehr lesen
Puffing of biomaterials involves mass, momentum and energy transport along with large volumetric expansion of the material. Development of physics-based models that can describe heat and moisture transport, rapid evaporation and large deformations can help understand the puffing process. ... Mehr lesen
Parallelization of microfluidic droplet generators is one of the major challenges that droplet microfluidics has to overcome to contribute significantly towards the sustainable manufacturing of advanced materials such as nanoparticles, quantum dots, active pharmaceuticals, etc. A ... Mehr lesen
Pore-scale modeling of multiphase flow through porous media is addressed most frequently to improve our understanding of flow and transport phenomena in such settings. It can be used to obtain macro-scale constitutive equations, to assign multiphase flow properties in large scale models, ... Mehr lesen
Laminar flow static mixers are accurate, inexpensive fluid mixing devices that can handle a wide range of fluids and mixing proportions. They have a wide range of industrial applications, especially in the consumer product, pharmaceutical, biomedical, and petrochemical industries. A good ... Mehr lesen
We investigate a prototype concept of a back-up electricity device where we use liquid formic acid (FA) to produce a mixture of carbon dioxide (CO2) and hydrogen (H2) which is used in a PEM fuel cell, Fig. 1. In the fluidized bed reactor the liquid FA is decomposed to a gaseous mixture ... Mehr lesen
In this work we investigate computationally the use of spiral channels at Reynolds numbers from 25 to 900 as a mixing structure (Figure 1) using COMSOL Multiphysics, the CFD Module, and the Chemical Species Transport physics. In this system, the centrifugal forces experienced by the ... Mehr lesen
The contrast between hydro-mechanical behavior of the rock matrix and fracture network systems results in flow partitioning between fracture and matrix systems which is affected by the In-situ stress regime. Fracture flow, Darcy law and free and porous media flow physics interfaces of ... Mehr lesen
The multiphase flow of two immiscible liquids in a microchannel was investigated numerically. A Y-shape micromixer was designed to produce a pattern of slugs from the flowing liquids. The mass transfer characteristics of this flow pattern are of primary interest in this study. A simple ... Mehr lesen
