Die Modell Galerie umfasst COMSOL Multiphysics Modelldateien aus einer Vielzahl von Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Sie können fertige Modelle herunterladen sowie Schritt-für-Schritt-Anleitungen, mit denen Sie die Modelle nachbauen können, und verwenden Sie die Modelle als Ausgangspunkt für Ihre eigenen Anwendungen. Nutzen Sie die Quick Search, um die für Ihren Fachbereich relevanten Modelle zu finden. Um die Dateien herunterzuladen, loggen Sie sich ein oder erzeugen Sie einen COMSOL Access Account, der mit einer gültigen COMSOL Lizenz assoziiert ist.

Magnetic Stiffness of an Axial Magnetic Bearing in 3D

The model illustrate the technique to calculate the magnetic stiffness in a 3D geometry of a permanent magnet axial magnetic bearing. The *Magnetic Fields* physics is used to model the bearing and compute the magnetic forces. The *Deformed Geometry* and *Sensitivity* physics are used to compute the magnetic stiffness. This model is featured and explained in much greater detail in the following ...

Optimizing Coils

Several different approaches to optimizing a ten-turn axisymmetric coil are presented. First, the current in each turn is adjusted with the objective of having a uniform magnetic flux density along the centerline. Second, the currents are adjusted to minimize power dissipation with a constraint on field minimum at a point. Third, the currents are adjusted to minimize the gradient in the ...

Inductive Liquid Metal Pump

Induction pumps are used in high temperature cooling systems. The principle of operation is equivalent to a linear three phase induction motor. The lack of moving parts and the pumped liquid being kept in a hermetically closed system are clear advantages. This model shows how to simulate a generic liquid Na pump.

Winding Designer for Electrical Machines

You can use this simulation app as a guide on how to automate selections using the Application Builder. In the example app, the selection algorithm depends on the relationship between the electrical and mechanical angles, which are generally used in the design of windings in electrical machines. Get more details in our blog post: [How to Automate Winding Design in Electrical Machines with an ...

Magnetic Prospecting of Ore Deposits

Magnetic prospecting is a geological exploration method that is applicable to certain types of iron ore deposits, in particular those made up of magnetite and hematite. The method consists of measuring the magnetic anomalies (changes in the earth's magnetic field) due to the presence of magnetic ores. The Magnetic Prospecting app simulates the effect of a deposit of magnetic ore on the earth's ...

Iron Sphere in a 13.56 MHz Magnetic Field

An iron sphere is exposed to a spatially uniform, sinusoidally time-varying, background magnetic field. The frequency of the field is so high that the skin depth in the sphere is much smaller than the radius. At such high frequencies it is possible to model only the fields and induced currents on the surface of the sphere, thus avoiding the need for solving for the fields within the volume of ...

Thin Low Permittivity Gap Comparison

The thin low permittivity gap boundary condition is meant to approximate a thin layer of material with low relative permittivity compared to its surroundings. This boundary condition is available for electrostatic field modeling. This example compares the thin low permittivity gap boundary condition to a full-fidelity model and discusses the range of applicability of this boundary condition.

Contact Impedance Comparison

The contact impedance boundary condition is meant to approximate a thin layer of material that impedes the flow of current normal to the boundary, but does not introduce any additional conduction path tangential to the boundary. This example compares the contact impedance boundary condition to a full-fidelity model and discusses the range of applicability of this boundary condition.

Small-Signal Analysis of an Inductor

If an inductor's magnetic material is nonlinear, then the inductance depends on the current passing through it. This model consists of an inductor with a nonlinear magnetic core, where the small-signal inductance is simulated as a function of current. The model also investigates how the small-signal inductance depends on the DC current.

Axial Homopolar Induction Bearing in 3D

This model illustrates the working principle of an axial homopolar induction bearing. An electrically conducting rotor rotating in a magnetic field produced by a permanent magnets induces eddy currents on the conducting rotor. The eddy currents, in turn, produce a magnetic field that opposes the magnetic fields by the magnets and induces a force that opposes the motion of the rotor. The axial ...