Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Thin Membrane Modelling for the Electrical Stimulation of Auditory Nerve

A. Grünbaum[1], S. Petersen[1], H.W. Pau[2], and U. van Rienen[1]

[1]IEF funded by DFG Research Training Group 1505/1 Welisa, University of Rostock, Rostock, Germany
[2]Otolaryngology “Otto Körner”, University of Rostock, Rostock, Germany

Modeling of 2-5 μm thin membranes into a cochlea with a width of 2 cm is computationally. The paper is focused on two approximative methods used to overcome this problem and in addition a simple model challenging of a plate capacitor with a thin membrane of different thickness in-between is presented. The results of simulations with both thin layer approximation methods are compared with ...

Modelling of Heat and Mass Transfer in Food Products

[1]M.B. Andreasen

[1]Danish Technological Institute, Aarhus C, Denmark

The use of the finite element method for understanding and analyzing the freezing and drying processes of food products is in focus in this paper. The objective of this study is to develop a model that can predict temperature distribution and weight loss of food products during the freezing and drying processes. The problem was solved by utilizing heat, mass transfer and moving mesh model. In ...

Chemical Reactions in a Microfluidic T-Sensor: Numerical Comparison of 2D and 3D Models

R. Winz[1][2], N. Schröder[1], W. Wiechert[1], and E. von Lieres[1]
[1]Institute of Biotechnology 2, Research Centre Jülich, Jülich, Germany
[2]Research Center for Micro and Nanochemistry, University of Siegen, Siegen, Germany

In recent years lab-on-microchip technology has become a powerful tool for micro-scale analysis of biochemical processes. In the studied system the overall process consists of transport, convection, diffusion, reaction and adsorption processes. Two compounds A and B, contained in a carrier fluid (buffer), are introduced into a reaction channel via a Y-shaped double-inlet. As the streams flow ...

Classical Models of the Interface Between an Electrode and an Electrolyte

E. Gongadze[1], S. Petersen[1], U. Beck[2], and U. van Rienen[1]
[1]Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
[2]Institute of Electronic Appliances and Circuits, University of Rostock,
Rostock, Germany

The Electrical Double Layer (EDL) plays a major role in understanding the interface between a charged surface (e.g. an implant) and ionic liquids (e.g. body fluids). The three classical models of the EDL (Helmholtz, Gouy, and Chapman-Stern) are numerically solved for a flat surface electrode in the 3D Electrostatics application mode of COMSOL Multiphysics® 3.5a. The values of the electric ...

Growth and Remodelling of Intracranial Saccular Aneurysms

A. Di Carlo[1], V. Sansalone[2], A. Tatone[3], and V. Varano[1]
[1]Modelling and Simulation Lab, Università Roma Tre, Roma, Italy
[2]Laboratoire de Mécanique Physique, Université Paris Est, Paris, France
[3]DISAT, Università degli Studi dell’Aquila, L'Aquila, Italy

We present a mechanical model a growing spherical shell suitable for predicting the evolution of a Saccular Cerebral Artery Aneurysms (SCAA). It relies basically on the Kröner-Lee decomposition, used to describe the interplay between the current and the relaxed configuration of body elements. Rupture or stabilization of a SCAA are the end effect of a number of biological mechanisms, still poorly ...

Numerical Modelling of a Free-Burning Arc in Argon. A Tool for Understanding the Optical Mirage Effect in a TIG Welding Device

J-M. Bauchire[1], E. Langlois-Bertrand[1], and C. de Izarra[1]
[1]GREMI, CNRS, Université d’Orléans, Orléans, France

In this paper, we present the numerical modelling of a free-burning arc and its application to the understanding of optical mirage effect which could occur in a TIG (Tungsten Inert Gas) device used in welding applications.

Failure Modes of Underground MV Cables: Electrical and Thermal Modelling

P.A. Wallace[1], M. Alsharif[1], D.M. Hepburn[1], and C. Zhou[1]
[1]Department of Energy Systems Engineering, Glasgow Caledonian University, Glasgow, United Kingdom

Two simulations of the performance of a Paper Insulated Lead Covered (PILC) Medium Voltage (MV) underground cable are presented. The first presents the thermal response of a cable, over seven days, to a realistic load with a diurnal variation. The second concentrates on the variation of the electric field stress within the cable over a single AC cycle. The effects of a void defect within the ...

A Study of Optical Sensor Based on Fiber Bragg Grating Using COMSOL Multiphysics®

C. Gavrila[1] and I. Lancranjan[2]

[1]Technical University of Civil Engineering Bucharest, Bucharest, Romania
[2]Advanced Study Centre, National Institute for Aerospace Research “Elie Carafoli”, Bucharest, Romania

Fiber optic sensors can measure a large range of physical, chemical and environmental variables such as temperature, pressure, shape, position, chemical concentration, moisture, etc. Fiber optic sensors provide measurements in applications where the conventional electrical based sensors cannot be used, due to measurement requirements such as extreme temperature, small size, high sensor count, or ...

Finite Element Analysis of Thermal Fatigue in Thermal Barrier Coatings

U. Bardi[1], C. Borri[1], A. Fossati[1], A. Lavacchi[1], and I. Perissi[1]
[1]Dipartimento di Chimica, Università degli Studi di Firenze, Sesto Fiorentino, FI, Italy

A Finite element model of plasma sprayed TBC’s was developed to estimate the stress induced by thermal cycling experiments. A heat transfer analysis was performed to evaluate the temperature distribution on the specimen during the cooling under an impinging air jet; temperature measurements performed with an infrared pyrometer on the cooled samples show good agreement with the evaluated ...

Dynamic Crack Propagation in Fiber Reinforced Composites

C. Caruso[1], P. Lonetti[1], and A. Manna[1]

[1]Department of Structural Engineering, University of Calabria, Arcavacata di Rende, CS, Italy

A generalized model to predict dynamic crack propagation in fiber composite structures is proposed. The proposed approach is based on a generalized formulation based on the Fracture Mechanics approach and Moving mesh methodology. Consistently to the Fracture Mechanics, the crack propagation depends from the energy release rate and its mode components, which are calculated by means of the ...