Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Measuring and Calculation of Positive Corona Currents Using COMSOL Multiphysics®

M. Quast[1] and N.R. Lalic[1]
[1]Gunytronic GmbH, St Valentin, Germany

The sensor type developed by Gunytronic uses corona discharge for measuring flow rates in exhaust streams of automotives, aircrafts and industrial plants. This paper will present the development of testing equipment used in laboratory for investigating physical relations on corona currents, charged particle transport, the calculation of the collateral electric fields and high potentials. This ...

Model of Heat and Mass Transfer with Moving Boundary During Roasting of Meat in Convection-Oven

A.H. Feyissa[1], J. Adler-Nissen[1], and K.V. Gernaey[2]
[1]Food Production Engineering, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
[2]Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark

A 2D mathematical model of coupled heat and mass transfer describing oven roasting of meat was formulated from first principles. The current formulation of model equations incorporates the effect of shrinkage phenomena and water holding capacity. The model equations are based on conservation of mass and energy. The pressure driven transport of water in meat is expressed using Darcy’s equation. ...

Static and Dynamic Simulation of an Electromagnetic Valve Actuator Using COMSOL Multiphysics®

R. Wislati[1] and H. Haase[1]
[1]Institut für Grundlagen der Elektrotechnik und Messtechnik, Leibniz Universität Hannover, Hannover, Germany

In this paper an Electromagnetic Solenoid Actuator (EMVA) consisting of an upper and lower electromagnet, a linear moving armature and two preloaded springs is considered as a potential approach in Variable Valve Actuation (VVA) systems for internal combustion engines. The analysis of the upper electromagnet has been performed using Finite Element Method (FEM) simulation. Thereby an axially ...

Impedance Spectroscopy and Cell Constant of the Electrodes for Deep Brain Stimulation

E. Vinter[1], S. Petersen[1], J. Gimsa[2], and U. van Rienen[1]

[1]Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
[2]Institute of Biology, University of Rostock, Rostock, Germany

To achieve a deeper understanding of the mechanism of the Deep Brain Stimulation (DBS) scientists use more and more numerical simulations. DBS inhibits overreaching brain activity via electric pulses that send into the brain by electrodes. Different electrode parameters such as geometry, frequency of stimulated impulse or applied voltage have a great influence on the size of the stimulated ...

The Full-System Approach for Elastohydrodynamic Lubrication

N. Fillot[1], T. Doki-Thonon[1], and W. Habchi[2]
[1]CNRS, INSA, Université de Lyon, Lyon, France
[2]Department of Industrial and Mechanical Engineering, Lebanese American University, Byblos, Lebanon

A ball is in contact with a plane, and a lubricant separates the two surfaces to decrease friction during their relative motion. To avoid wear, the lubricant film thickness should be higher than the surface roughness. The goal of this paper is to show how it is possible to solve efficiently the problem of elastohydrodynamics lubrication with COMSOL Multiphysics®, using a PDE (Partial ...

Modeling of Complex Structures in Electrotechnology

Göran Eriksson
Dr., ABB Corporate Research, Sweden

Outline of presentation: In electromagnetic technology applications the finite element method is very well suited for a wide range of problem types For many cases, in particular when inhomogeneous materials having complex properties are involved as well as when multiphysics couplings are essential, it is the only option available The somewhat unfavourable performance scaling with problem ...

A Magnetohydrodynamic Study of a Inductive MHD Generator

A. Montisci[1] and R. Pintus[1]

[1]Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy

The aim of the proposed device is to overcome the typical drawbacks of MHD generators, such as the needed of a very high external magnetic field, the strong dependency of the efficiency by the temperature of the fluid, and the deterioration of the electrodes that are in contact with the high temperature plasma. In fact the proposed device does not need an external magnetic fluid to work, but it ...

Temperature Distribution in High Voltage Dummy Cable

G.Y. Sun[1], O. Sekula[1], and C. Albanbauer[1]
[1]Brugg Kabel AG, Brugg, Switzerland

A 2D model of coupled electricthermal application is used to calculate the temperature distribution in a high voltage dummy cable laid in free air, where no high voltage is applied. Resistive loss heats the cable while the surrounding air cools it down. The steady-state condition is reached when heat balances. The steady-state temperature depends not only on the resistive loss but also on the ...

Design and Simulation of a Microscale Magnetophoretic Device for the Separation of Nucleated Fetal Red Blood Cells from Maternal Blood

G. Schiavone[1], D.M. Kavanagh[2], and M.P.Y Desmulliez[2]

[1]Politecnico di Torino, Torino, Italy
[2]MIcroSystems Engineering Centre, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, Scotland, United Kingdom

Intense research has been carried out into methods that aim at harvesting fetal cells from maternal blood as substitutes to amniocentesis and chorionic villus sampling. This work focuses on the separation of fetal nucleated red blood cells from the maternal circulation based on their intrinsic magnetic properties. The design and simulation of a magnetophoretic separator is described, as it will ...

Multi-Objective Optimization of a Ball Grid Array Using modeFRONTIER® and COMSOL Multiphysics®

H. Strandberg[1], T. Makkonen[2], and J. Leinvuo[2]
[1]ESTECO Nordic AB, Lund, Sweden
[2]VTI Technologies Oy, Vantaa, Finland

Capacitive MEMS (Micro-Electro-Mechanical Systems) accelerometers may be directly soldered to the printed circuit board by an array of solder balls. Differences in the thermal expansion coefficients of the pertinent materials cause deformations of the accelerometer under temperature change. This may cause a relative movement of the sensing masses with respect to the sensing electrodes, resulting ...