Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Modeling of HTPEM Fuel Cell Start-Up Process by Using COMSOL Multiphysics

Y. Wang[1], D. Uwe Sauer[1]
[1]Electrochemical Energy Conversion and Storage Systems, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, Aachen, Germany

HTPEM fuel cells are considered to be the next generation fuel cells. The electrochemical kinetics for electrode reactions are enhanced by using PBI membrane at an operation temperature between 160-180 °C comparing to LTPEM fuel cells. But starting HTPEM fuel cells from room temperature to an operation temperature is a challenge. In this work, using preheated air to heat up the fuel cells ...

Simulation Organogenesis in COMSOL: Deforming and Interacting Domains

D. Iber[1], D. Menshykau[1]
[1]D-BSSE, ETH Zurich, Basel, Switzerland

Organogenesis is a tightly regulated process that has been studied experimentally for decades. We are developing mechanistic models for the morphogenesis of limbs, lungs, and kidneys with a view to integrate available knowledge and to better understand the underlying regulatory logic. Organ size changes dramatically during development, and tissues are composed of several layers that may expand ...

Fracture-Matrix Flow Partitioning and Cross Flow: Numerical Modeling of Laboratory Fractured Core Flood

R. Sanaee[1], G.F. Oluyemi[1], M. Hossain[1], B.M. Oyeneyin[1]
[1]Robert Gordon University, Aberdeen, United Kingdom

The contrast between hydro-mechanical behavior of the rock matrix and fracture network systems results in flow partitioning between fracture and matrix systems which is affected by the In-situ stress regime. Fracture flow, Darcy law and free and porous media flow physics interfaces of COMSOL were used in simulating a fractured core flooding test to achieve a better understanding of flow ...

Keyhole Formation During Spot Laser Welding: Heat and Fluid Flow Modeling in a 2D Axisymmetric Configuration

M. Courtois[1], M. Carin[2], P. LeMasson[2], S. Gaied [1]
[1]ArcelorMittal, Global R&D, Montataire, France
[2]LIMATB Laboratory, Université de Bretagne Sud, Lorient, France

For a better understanding of phenomena associated to the appearance of defects in laser welding, a heat and fluid flow model is developed. This study is focused on the modeling of a static laser shot on a sample of steel. This 2D axialsymmetric configuration is used to study phenomena related to the creation of the keyhole. This model takes into account the three phases of the matter: the ...

COMSOL Analysis of Acoustic Streaming and Microparticle Acoustophoresis

H. Bruus[1], P.B. Muller[1], R. Barnkob[1], M.J.H. Jensen[2]
[1]Technical University of Denmark, Kongens Lyngby, Denmark
[2]COMSOL, Kongens Lyngby, Denmark

We have simulated the ultrasound-induced acoustophoretic motion of microparticles suspended in an aqueous solution. The full first-order thermoviscous acoustics equations have been implented on a rectangular microfluidic 2D domain excited with an ultrasound field tuned to resonance near 2 MHz. The micrometer-thin but crucial viscous boundary layers at the rigid walls have been fully resolved. ...

Implementation of an Isotropic Elastic-Viscoplastic Model for Soft Soils Using COMSOL Multiphysics

M. Olsson[1], T. Wood[1], C. Alén[1]
[1]Division of GeoEngineering, Chalmers University of Technology, Gothenburg, Sweden

In this paper a elastic-viscoplastic (creep) model is implemented in COMSOL 4.2a and 4.3 and benchmarked against another commercial finite element software package with a very similar material model. It is also validated against commonly performed laboratory tests such as Constant Rate of Strain oedometer tests (CRS) and K0-Consolidated Undrained triaxial tests (K0CU). The implementation in ...

Easy Evaluation of Streamer Discharge Criteria

G. Eriksson[1]
[1]ABB, Corporate Research, Västerås, Sweden

An easily implemented method is devised, where analytical criteria for the occurrence of streamer discharges in strong electric fields are evaluated. This is highly useful when designing high voltage power transmission systems and components where the insulation is provided by a gas, e.g. air or SF6.

Thermo-Acoustic Analysis of an Advanced Lean Injection System in a Tubular Combustor Configuration

A. Giusti[1], A. Andreini[1], B. Facchini[1], F. Turrini[2], Ignazio Vitale[2]
[1]Department of Energy Engineering, University of Florence, Florence, Italy
[2]Avio, Turin, Italy

In this work a thermoacoustic analysis of a tubular combustor with an advanced lean injection system is presented. The performed analysis is based on the resolution of the eigenvalue problem related to an inhomogeneous wave equation which includes a source term representing heat release fluctuations (the so called Flame-Transfer-Function, FTF) in the flame region. The effect of the mean flow is ...

Current Density Distribution and Material Removal Behavior on the Graphite/Iron-matrix Interface in Cast Iron Under Pulse Electrochemical Machining Conditions

O. Weber[1], R. Kollmannsperger[2], D. Bähre[2]
[1]Center for Mechatronics and Automatization, Saarbrücken, Germany
[2]Institute of Production Engineering, Saarland University, Saarbrücken, Germany

The Pulse Electrochemical Machining is especially suitable for the precise production of complex geometric contours with high precision and high surface quality demands in workpieces in series manufacturing. During this process, the negative structure of an electrode is copied to the workpiece without sub-surface damages. An adequate knowledge of the current density distribution and thus of the ...

Utilization of COMSOL Multiphysics' JAVA API for the Implementation of a Micromagnetic Modeling and Simulation Package with a Customized User Interface

L. Teich[1], A. Hütten[2], C. Schröder[1]
[1]Department of Engineering Sciences and Mathematics, Computational Materials Science & Engineering (CMSE), University of Applied Sciences Bielefeld, Bielefeld, Germany
[2]Department of Physics, Thin Films and Nanostructures, Bielefeld University, Bielefeld, Germany

One of the big advantages of COMSOL Multiphysics is the possibility to implement user-defined partial differential equations (PDE) which can be coupled to COMSOL\'s predefined physics interfaces. However, using the tool’s standard user interface requires manual implementation of the PDEs and a multitude of problem-specific parameters. This process is not just error-prone but also very time ...