Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird.

Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Präsentationen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl oder verwenden Sie die Schnellsuche, um eine bestimmte Präsentation oder einen bestimmten Filter nach Anwendungsbereichen zu finden.
Sehen Sie sich die COMSOL Conference 2018 Kollektion an

Design of High Performance Micromixer for Lab-On-Chip (LOC) Applications

K. Karthikeyan[1] , L. Sujatha[1]
[1]Rajalakshmi Engineering College, Chennai, Tamil Nadu, India

This paper presents the design and simulation of micromixer for Lab-On-Chip (LOC) applications. There are two types of micromixers: one is an active micromixer and another one is a passive micromixer. This paper investigates microfluidic flow characterization and mixing rate of two ... Mehr lesen

Modeling of Rotating Magnetic Field Eddy Current Probe for Inspection of Tubular Metallic Components

T. V. Shyam[1], B. S. V. G. Sharma[1], K. Madhusoodanan[1]
[1]Bhabha Atomic Research Centre, Mumbai, Maharashtra, India

Rotating Magnetic Field Eddy current technique is a promising technique for inspection of flaws in metallic tubular components. Three primary coils, 120 degrees apart in space, are excited with three phase current source, by virtue, a rotating magnetic field polarised ... Mehr lesen

Stress Evolution due to EM in Metal Line Confined: Model and Correlation with Experiments

G. Marti [1], L. Arnaud [2], Y. Wouters [3]
[1] STmicrolectronics & Univ. Grenoble Alpes-SIMAP, France
[2] Cea-Leti Minatec, Grenoble, France
[3] Univ. Grenoble Alpes-SIMAP, Grenoble, France

Electromigration induced failure is one of the main reliability issues for the microelectronics industry. The continuous scaling of the interconnect dimensions leads to higher operating current densities and temperatures, which accentuates the electromigration failure. As a consequence, ... Mehr lesen

Numerical Simulation of Acoustic Properties of Porous Metals under High Sound Pressure Level Conditions

B. Zhang [1], X. Wang [1], L. Ni [1]
[1] School of Mechanical Engineering, Ningxia University, China

The sound propagation and absorption properties in porous media under high sound pressure level conditions have been reported elsewhere. Also several analytical and semi-analytical solutions have been developed; however, these solutions are relatively complicated and the provided results ... Mehr lesen

Analysis Of MEMS Accelerometer Sensor Using the Taguchi Optimization Method

N. Johan [1]
[1] Universiti Teknikal Malaysia Melaka, Malaysia

A successful and coherent operation of micro - accelerometers, which has been used in various applications for safety purposes like the airbag deployment systems used in vehicles. This can only be attained when the sensitivity requirement is met. The project is about the analysis of the ... Mehr lesen

An Elastohydrodynamic Lubrication Model Considering Surface Roughness and Mixed Friction

J. Moder [1], F. Grün [1],
[1] Chair of Mechanical Engineering, Montanuniversität, Leoben, Austria

Highly loaded lubricated machine elements such as gears or camshafts are an integral part in a wide variety of technical products. Due to higher efficiency requirements these machine elements have to be improved continuously, which leads to the necessity to investigate physical ... Mehr lesen

Modeling, Simulation, and Optimization of Piezoelectric Bimorph Transducer for Broadband Vibration Energy Harvesting in Multi-Beam and Trapezoidal Approach

N. Chen [1], V. Bedekar [1],
[1] Department of Engineering Technology, Middle Tennessee State University, Murfreesboro, TN, USA

The objective of the research is to design a broadband energy harvester device through the multi-beam approach and non-linear trapezoidal geometry approach. The performance of two piezoelectric PZT-PZN polycrystalline ceramic composition samples are simulated in COMSOL Multiphysics®, and ... Mehr lesen

Implementation of an Active Fluid Cooling Design in a 48 V High-Power Battery Module

Z. Wu [1], A. Stawarski [2], H. Kemper [2],
[1] Energy Storage Systems, FH Aachen - University of Applied Sciences, Aachen, Germany; RWTH Aachen University, Aachen, Germany
[2] Energy Storage Systems, FH Aachen - University of Applied Sciences, Aachen, Germany

Individual batteries have their own operational temperature ranges, which shall be respected to avoid both damaging of the cells and shortening of the cycle life. In terms of the Li-Ion cells, many of them do not function well at higher temperatures. Therefore, a better understanding of ... Mehr lesen

Multiphysics Simulation of Micro-Thermoelectric Generators Based on Power Factor Optimized Materials

V. Barati [1], H. Reith [1], G. Li [1], D. A. Lara Ramos [1], G. Schierning [1], K. Nielsch [1],
[1] Leibniz Institute for Solid State and Material Research, Dresden, Germany

Thermoelectric generators (TEGs) which convert heat into electrical energy due to Seebeck effect, have recently attracted a great attention as green and sustainable energy sources. One of the challenges in the field of thermoelectric devices is the design optimization in order to make ... Mehr lesen

Towards Multiscale Models for Bioimpedance of Human Skin with COMSOL Multiphysics

Karl Erik Birgersson [1],
[1] National University of Singapore, Singapore

Mechanistic mathematical modeling for electrical impedance spectroscopy (EIS) of human skin involves not only the equation of change for the alternating current from and to the electrodes of the EIS probe but also the spatial resolution of the various skin layers and their material ... Mehr lesen