Veröffentlichungen und Präsentationen

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

COMSOL Multiphysics: Innovative Design and Engineering

S. Wang[1]
[1]Department of Mechanical Engineering, Kun Shan University of Technology, Tainan, Taiwan

Multiphysics simulation has been used extensively in our research for fluid flow and heat transfer applications. Our projects include: simulation of fluid dynamics in an active liquid heat sink for CPU cooling, impeller design for a pipe flow generator with computational fluid dynamics (CFD), investment casting with plastic rapid prototype patterns, phase change materials with rapid prototyping ...

Phase-sensitive Microcalorimetry for Study of Low-level Radioactive Sources

H. Chen-Mayer[1], R. E. Tosh[1]
[1]NIST, Gaithersburg, MD, USA

Microcalorimetry for standardizing activities of radionuclide samples entails measurements of input power heat flow from the sample cell, with the radioactive sample compared to the reference cell under balanced conditions. The measurement is susceptible to noise due to drift and 1/f effects; thus, a better result might be expected with periodic insertion of the source into the sample chamber and ...

Updated Results of Singlet Oxygen Modeling Incorporating Local Vascular Diffusion for PDT - new

R. Penjweini[1], M. M. Kim[1], T. C. Zhu[1]
[1]Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA

Introduction: Singlet oxygen (¹O₂) has a critical role in the cell-killing mechanism of photodynamic therapy (PDT). Therefore, in this study, the distance-dependent reacted ¹O₂ is numerically calculated using finite-element method (FEM). Herein, we use a model [Ref. 1] that has been previously developed to incorporate the diffusion equation for the light transport in tissue and the ...

A Comparative Study of the Basic Flow Field Designs for High Temperature Proton Exchange Membrane Fuel Cells - new

A. Lele[1], N. Lodha[1], R. Srivastava[1], A. Pandey[2], A. Paul[3]
[1]CSIR - National Chemical Laboratory, Pune, Maharashtra, India
[2]Reliance Industries Ltd., Reliance Technology Group, Navi Mumbai, Maharashtra, India
[3]CSIR - Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India

A Proton Exchange Membrane Fuel Cell (PEMFC) comprises a membrane-electrode assembly sandwiched between two conducting ‘monopolar’ plates having engraved gas flow channels, also called the flow field. The purpose of the flow field is to provide sufficient residence time for the gases to undergo reactions at the two electrodes, effect a homogeneous distribution of reactant gases over the given ...

Investigation on MEMS Based Thermal Sensor for Cancer Detection

A. V. Lakshmi[1], K. C. Devi[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India

This paper presents the design and simulation of a thermal sensor using COMSOL Multiphysics® software for the detection of low body temperature syndrome which can allow the early detection of cancer. This sensor is made of an alloy consisting of two materials with different coefficients of thermal expansion. The main objective of this work is to investigate the structural change in the sensor ...

Efficient Heat Management Technique for Electronic Display Device

U. Shukla[1], and D. Gupta[1]
[1] Department of Materials and Metallurgical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh, India

One of the major challenges faced by the semiconductor industry is that electronic circuits produce a lot of heat energy during their operation. And with the current scenario where the gates are packed so much close together, then the problem of heat generation has become extremely significant. So we are working towards the efficient heat management and dissipation solution for the heat generated ...

Mathematical Modeling of Direct Borohydride Fuel Cells and its Experimental Validation

A. K. R. Paul[1], K. S. Gandhi[2], and A. K. Shukla[3]
[1] Central Electrochemical Research Institute – Madras Unit, CSIR Complex, Taramani, Chennai, Tamil Nadu, India
[2] Department of Chemical Engineering, Indian Institute of Science, Bangalore , Karnataka, India
[3] Solid State & Structural Chemistry Unit, Indian Institute of Science, Bangalore , Karnataka, India

  Direct borohydride fuel cells (DBFCs) use sodium borohydride (NaBH4) as fuel and hydrogen peroxide (H2O2) as an oxidant. A mathematical model encompassing mass balance of ionic species in different regions of the DBFC is developed. Both the oxidation of sodium borohydride and reduction of hydrogen peroxide are assumed to obey Tafel kinetics. This is combined with boundary conditions ...

Motion of Uncharged Particles in Electroosmotic Flow through a Wavy Cylindrical Channel

N. Qudus[1], T. Mahbub[1], S. A. Ali[1], and M. Shajahan[1]
[1] Bangladesh University of Engineering and Technology, Dhaka Bangladesh

A finite element model is employed to describe the electric potential distribution and electroosmotic flow field inside a wavy cylindrical channel. The model uses coupled Laplace and Poisson-Boltzmann to evaluate the electric potential distribution inside the channel. It also contains continuity and Navier–Stokes equations for the solution of fluid flow. A particle trajectory model was ...

Modeling Mechanical Deformation and Optical Waveguiding Properties of Ion-Implanted Diamond

F. Bosia[1], P. Olivero[2], and E. Vittone[2]
[1]Dipartimento di Fisica Teorica, Università di Torino, Torino, Italy
[2]Dipartimento di Fisica Sperimentale, Università di Torino, Torino, Italy

Ion implantation in insulating materials leads to local variations in mechanical and optical properties that can be exploited for the fabrication of micro-structures. In particular, ion irradiation of diamond causes the formation of buried amorphised layers, with correspondent mass density and refractive index variations that depend on the level of “damage” of the crystal structure. ...

COMSOL Derived Universal Scaling Model For Low Reynolds Number Viscous Flow Through Microfabricated Pillars – Applications to Heat Pipe Technology

N. Srivastava[1], and C.D. Meinhart[1]
[1]Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara California, USA

Cooling of high-power density electronic devices remains a challenge. Microfluidic heat-pipes with the potential of achieving ultra-high thermal conductivities offer a low-cost technology for cooling electronics. To achieve high thermal conductivity, it is critical to maximize the rate of liquid transport inside the heat pipe. We propose a novel array of microfabricated pillars to maximize liquid ...

Quick Search

2681 - 2690 of 2857 First | < Previous | Next > | Last