Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird.


Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Präsentationen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl oder verwenden Sie die Schnellsuche, um eine bestimmte Präsentation oder einen bestimmten Filter nach Anwendungsbereichen zu finden.
Sehen Sie sich die COMSOL Conference 2018 Kollektion an

Design of High Performance Micromixer for Lab-On-Chip (LOC) Applications

K. Karthikeyan[1] , L. Sujatha[1]
[1]Rajalakshmi Engineering College, Chennai, Tamil Nadu, India

This paper presents the design and simulation of micromixer for Lab-On-Chip (LOC) applications. There are two types of micromixers: one is an active micromixer and another one is a passive micromixer. This paper investigates microfluidic flow characterization and mixing rate of two ... Mehr lesen

Drag Fluctuations of a Fully Deployed Flow Actuator Embedded Inside Turbulent Boundary Layer Flow new

Dr. A. Elzawawy[1]
[1]Engineering & Technology Department, Vaughn College of Aeronautics & Technology, Flushing, NY, USA

Introduction: In this work, a CFD model of 2D flow around a fully deployed flow actuator was developed using COMSOL Multiphysics® software and the CFD Module. The results of COMSOL modeling is also compared with the experimental data of the same dimensions actuator. The 100mmX2mm ... Mehr lesen

Modeling of Rotating Magnetic Field Eddy Current Probe for Inspection of Tubular Metallic Components

T. V. Shyam[1], B. S. V. G. Sharma[1], K. Madhusoodanan[1]
[1]Bhabha Atomic Research Centre, Mumbai, Maharashtra, India

Rotating Magnetic Field Eddy current technique is a promising technique for inspection of flaws in metallic tubular components. Three primary coils, 120 degrees apart in space, are excited with three phase current source, by virtue, a rotating magnetic field polarised ... Mehr lesen

Stress Evolution due to EM in Metal Line Confined: Model and Correlation with Experiments

G. Marti [1], L. Arnaud [2], Y. Wouters [3]
[1] STmicrolectronics & Univ. Grenoble Alpes-SIMAP, France
[2] Cea-Leti Minatec, Grenoble, France
[3] Univ. Grenoble Alpes-SIMAP, Grenoble, France

Electromigration induced failure is one of the main reliability issues for the microelectronics industry. The continuous scaling of the interconnect dimensions leads to higher operating current densities and temperatures, which accentuates the electromigration failure. As a consequence, ... Mehr lesen

Stress Induced by Silicon-Germanium Integration in Field Effect Transistors

R. Berthelon [1], D. Dutartre [1], F. Andrieu [2]
[1] STMicroelectronics, France
[2] CEA Leti, France

The integration of high level of stress in field effect transistors is performed through incorporation of intrinsically strained SiGe layers. With the help of COMSOL simulations, we performed two studies addressing the level of stress in the area of interest. In the first case, we ... Mehr lesen

Fluid Coupling Effects Of An Array Of Oscillators Vibrating In Close Proximity To A Solid Surface

A. K. Manickavasagam [1]
[1] University of Canterbury, New Zealand

High speed non-contact Atomic Force Microscope (AFM) comprising a single cantilever beam is used to track the motion of live-cells as it ensures no damage to soft biological samples [1]. PRONANO arrays [2] consisting of multiple cantilever beams have been used to achieve faster scan ... Mehr lesen

Analysis Of MEMS Accelerometer Sensor Using the Taguchi Optimization Method

N. Johan [1]
[1] Universiti Teknikal Malaysia Melaka, Malaysia

A successful and coherent operation of micro - accelerometers, which has been used in various applications for safety purposes like the airbag deployment systems used in vehicles. This can only be attained when the sensitivity requirement is met. The project is about the analysis of the ... Mehr lesen

Numerical Analysis of Radiant Heat Emission Systems

F. Ochs [1], M. Magni [2], M. Bianchi Janetti [1],
[1] University of Innsbruck, Unit for Energy Efficient Buildings, Innsbruck, Austria
[2] University of Bologna, Bologna, Italy

Radiant heating generally addresses all heat emission systems having a share of radiant heat emission greater than 50%, compared to a convector or fan coil where the heat is transferred mainly by means of convection. Recently, so-called infrared-heating systems are discussed as a cost ... Mehr lesen

An Elastohydrodynamic Lubrication Model Considering Surface Roughness and Mixed Friction

J. Moder [1], F. Grün [1],
[1] Chair of Mechanical Engineering, Montanuniversität, Leoben, Austria

Highly loaded lubricated machine elements such as gears or camshafts are an integral part in a wide variety of technical products. Due to higher efficiency requirements these machine elements have to be improved continuously, which leads to the necessity to investigate physical ... Mehr lesen

Modeling, Simulation, and Optimization of Piezoelectric Bimorph Transducer for Broadband Vibration Energy Harvesting in Multi-Beam and Trapezoidal Approach

N. Chen [1], V. Bedekar [1],
[1] Department of Engineering Technology, Middle Tennessee State University, Murfreesboro, TN, USA

The objective of the research is to design a broadband energy harvester device through the multi-beam approach and non-linear trapezoidal geometry approach. The performance of two piezoelectric PZT-PZN polycrystalline ceramic composition samples are simulated in COMSOL Multiphysics®, and ... Mehr lesen