Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Helium Two-Phase Flow in a Thermosiphon Open Loop

B. Baudouy[1] and F. Visentin[1]
[1]CEA, Irfu, SACM, Gif-sur-Yvette, France

The construction of high magnetic field superconducting coils requires the use of low temperature superconductors that must be cooled down to liquid helium temperature (4.2 K). Natural two-phase convection loops, i.e. thermosiphon loop, are used as cooling system for large superconducting magnets mainly because of its passive nature. The study present a thermohydraulics model realized with ...

3D Dynamic Simulation of a Metal Hydride-Based Hydrogen  Storage Tank

A. Freni, and F. Cipiti
CNR- Institute for Advanced Energy Technologies “Nicola Giordano”, Messina, Italy

In this paper, a 3D dynamic simulation for a portion of a metal hydride-based (LaNi5) hydrogen storage tank is presented. The model is based on heat and mass balances and considers coupled heat and mass transfer resistance through a non-uniform pressure and temperature sorbent bed. The governing equations were implemented and solved using the COMSOL Multiphysics software package. The simulation ...

Electric Field Distributions and Energy Transfer in Waveguide-Based Axial-Type Microwave Plasma Source

H. Nowakowska[1], M. Jasínski[1], and J. Mizeraczyk[1,2]
[1]The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk, Poland
[2]Dept. of Marine Electronics, Gdynia Maritime University, Gdynia, Poland

In this paper, we examine changes of the electric field distributions in waveguide-based axial-type microwave plasma source (MPS) during tuning procedure. The distributions strongly depend on position of the movable short, so does the wave reflection coefficient of the incident wave. A method of determining tuning characteristics of the MPS consisting in treating the MPS as a two-port network, ...

Development of an Interlinked Curriculum Component Module for Microchemical Process Systems Components Using COMSOL Multiphysics

A. Mokal, and P. Mills

Department of Chemical and Natural Gas Engineering, Texas A&M University, Kingsville, TX, USA

COMSOL Multiphysics provides a powerful numerical platform where various models for microchemical process technology components can be readily created for both education and research. This modeling tool allows chemical engineering students to focus on understanding the effects of various microchemical system component design and operational parameters versus coding and debugging of the numerical ...

Magnetic Particle Buildup Growth on Single Wire in High Gradient Magnetic Separation  

F. Chen
Department of Chemical Engineering, M.I.T., Cambridge, MA, USA

Magnetic fluids containing nano or submicron magnetic particles and their application in food, biological and pharmaceutical systems have recently attracted increasing attention. Magnetic particles can be collected efficiently in magnetizable matrices (e.g. iron wires) in high gradient magnetic separation (HGMS) process. In this work, the dynamic buildup growth process is treated as a moving ...

Atmospheric Icing of Transmission Line Conductor Bundles

T. Wagner[1], and U. Peil[2]
[1]International Graduate School of Risk Management of Natural and Civilization Hazards on Buildings and Infrastructure, Braunschweig, Germany
[2]Institute of Steel Structures, Technical University Braunschweig, Braunschweig, Germany

Hazardous for the transmission lines is not only the static ice load, but also the aerodynamic instability of iced cables. It can lead to large amplitude oscillations at low frequencies. Also,  twisting due to asymmetrical iced cables may increase the fatigue rate. In extreme events, atmospheric icing can cause severe damage on towers and power lines, resulting in extensive electricity ...

Determination of Electric Potential Distribution and Cell Resistance of a Uranium Electrorefining Cell

S.P. Ruhela, S. Agarwal, B. Muralidharan, B.K. Sharma, B.P. Reddy, G. Ravisankar, K. Nagarajan, C.A. Babu, and P. Kalyanasundaram
Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu, India

Electrorefining is an electrolytic process for obtaining high purity metal. In this process the impure metal is made anode and the high purity metal is deposited on cathode. Electrorefining is a key step in pyrochemical reprocessing of spent fuel from metal fuel fast reactors. Development of an electrorefining cell, in which processing of 10 kg of simulated spent fuel will be demonstrated, is ...

Detection of E.coli Cell using Capacitance Modulation

A.K. Dwivedi, R.M. Patrikar, R.B. Deshmukh, and G. Pendharkar
Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India

Testing and verification is very important to increase reliability of a system. In water analysis its purity is verified using different test methods. Biosensors are very useful to detect the microorganisms present in water. This paper presents a method to detect E.coli bacteria in water depending upon the capacitance modulation in the presence and absence of E.coli cell, which is simulated in ...

Design of High Performance Condenser Microphone Using Porous Silicon

S. Suganthi[1], M. Anandraj[2], and L. Sujatha[1]
[1]Department of Electronics & Communication Engineering, Rajalakshmi Engineering College, Chennai, India
[2]Department of Physics, Rajalakshmi Engineering College, Chennai, India

Porous Silicon (PS) can easily be formed by electrochemical etching of silicon in HF based electrolytes at room temperature. Since, PS is compatible with silicon IC technology; it finds lot of applications in the fabrication of MEMS devices. In the current study, we discuss the design of a condenser microphone using a Silicon/ Porous Silicon composite membrane as a movable plate. The performance ...

Wavebased Micromotor for Plane Motions (3-DoF)

G. Jehle, D. Kern, and W. Seemann
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

This paper proposes the design of a 3-Degree of Freedom(DoF) motor based on surface acoustic waves in elastic solids. The rotor is propelled by wave fields, for linear and rotational motion respectively, in the stator, that can be steered by the driving signal of the piezoelectric actuators, which are placed on an elastic plate. The next considerations concern the feasibility of the proposed ...

2671 - 2680 of 3390 First | < Previous | Next > | Last